Math 108 Spring 2020 Final Exam Due Wednesday June 10 at Midnight

- 1. (15 points) Determine the three pairs of equivalent sentences below and find their truth tables:
 - (a) P
 - (b) $P \wedge (\sim Q)$
 - (c) $\sim ((\sim P) \land Q)$
 - (d) $\sim [P \implies (P \land Q)]$
 - (e) $P \lor [(\sim Q) \lor (P \lor (\sim Q))]$
 - (f) $P \iff [(Q \implies P) \lor ((\sim Q) \implies P)]$

ANS: (b) and (d) are both F unless P is T and Q is F. (c) and (e) are both T unless P if F and Q is T.

- (a) and (f) are equivalent.
- 2. (15 points) (Induction) In the universe \mathbb{N} prove that

$$(\forall n) \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

ANS: For the base case if n = 1 the left side is $LHS(1) = 1^2$ and the right side is RHS(1) = 6/6 which are equal. For the induction step if LHS(n) = RHS(n) then $LHS(n+1) = LHS(n) + (n+1)^2 = RHS(n) + (n+1)^2 = (n+1)[\frac{2n^2+n}{6} + (n+1)] = (n+1)[\frac{2n^2+7n+6}{6}] = (n+1)[\frac{((n+1)+1)(2(n+1)+1)}{6}] = RHS(n+1)$. q.e.d.

- 3. (20 points) Consider three possible universes: \mathbb{N}, \mathbb{Z} and \mathbb{R} .
 - (a) Determine for each of the following four sentences and each of the three above universes whether the sentence is true in the universe.
 - i. $(\forall x)(\exists !y) \quad x^3 = y^2$ **ANS:** F, F and F. ii. $(\forall x)(\exists !y) \quad x^2 = y^3$ **ANS:** F, F and T. iii. $(\exists !y)(\forall x) \quad xy^2 = y$ **ANS:** F, T and T. iv. $(\exists !y)(\forall x) \quad xy^2 = x$ **ANS:** T, F and F.
 - (b) Prove one case in which the sentence is true.
 - **ANS:** For (iv) with the universe \mathbb{N} if y = 1 and with any x the equation holds (existence). If x = 1 and the equation holds then $y^2 = 1$ so y = 1 (uniqueness). q.e.d.

(c) Prove one case in which the sentence is false. **ANS:** For (i) with the universe \mathbb{R} and x = 1 both y = 1 and y = -1 satisfy the equation. q.e.d.

4. (15 points) Prove that if n is a natural number then n is a multiple of three iff $n^2 - 1$ is not a multiple of three.

ANS: For the forward implication assume for contradiction that n = 3k and $n^2 - 1 = 3r$. Hence 1 is not a multiple of three and $1 = n^2 - (n^2 - 1) = 9k^2 - 3r = 3(3k^3 - r)$ is a multiple of three, a contradiction. For the (contrapositive of) the backward implication assume that n is not

For the (contrapositive of) the backward implication assume that n is not a multiple of three and hence either n = 3k + 1 or n = 3r + 2. In the first case $n^2 - 1 = 9k^2 + 6k + 1 - 1 = 3(3k^2 + 2k)$ is a multiple of three. In the second case $n^2 - 1 = 9r^2 + 12r + 4 - 1 = 3(3r^2 + 4r + 1)$ is again a multiple of three. q.e.d.

- 5. (15 points) Consider the relation S from \mathbb{R} to \mathbb{R} given by xSy if $x y \in \mathbb{Z}$.
 - (a) Show that S is an equivalence relation. **ANS:** Reflexivity: If $x \in \mathbb{R}$ then $x - x = 0 \in \mathbb{Z}$ so xSx. Symmetry: If $x, y \in \mathbb{R}$ and xSy then $x - y \in \mathbb{R}$. Thus $y - x = -(x - y) \in \mathbb{R}$ so ySx. Transitivity: If $x, y, z \in \mathbb{R}$ and xSy and ySz then $x - y, y - z \in \mathbb{R}$. Hence $x - z = x - y + y - z \in \mathbb{R}$ so zSz. q.e.d.
 - (b) Find three different real numbers a, b and c for which $\overline{a} = \overline{b} \neq \overline{c}$. **ANS:** $a = \frac{1}{2}, b = \frac{7}{2}$, and c = 5 work.
- 6. (20 points) If A is a set consider the relation $R = \{((x, y), \{x, y\}) | (x \in A) \land (y \in A)\} \text{ from } A \times A \text{ to } \mathcal{P}A.$
 - (a) Draw an arrow diagram (eg Fig 3.1.1.b) for R if $A = \{1, 2, 3\}$. **ANS:** The diagram has $3 \cdot 3 = 9$ dots on the left and $2^3 = 8$ on the right with 9 arrows.
 - (b) Show that for any set A the relation R is a function.
 ANS: If (x, y) ∈ A × A then S = {x, y} is the unique element of P(A) with (x, y)RS.
 - (c) Show that for any set A the relation R is not onto. **ANS:** If $S \in \operatorname{range}(R)$ then there are $x, y \in A$ with $S = \{x, y\}$ so $x \in S$ so S is not the empty set which is an element of $\mathcal{P}(A)$. q.e.d.
 - (d) Show that for any set A with at least two elements the relation R is not one-to-one.

ANS: If A has at least two elements choose $x, y \in A$ with $x \neq y$ and hence $(x, y) \neq (y, x)$ but $R((x, y)) = \{x, y\} = \{y, x\} = R((y, x))$. q.e.d.