MAT 108 Homework 1 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 1.1 #1, 3dhj, 6, 7aeg

- **1.** (a) Not a proposition. (has no truth value)
 - (b) Proposition. If P is the statement " π is a rational number", then we can write the proposition as $\sim P$. The number π is irrational, so P is false and $\sim P$ is false as well.
 - (c) Not a proposition (need to specify what x is)
 - (d) Not a proposition.
 - (e) Proposition. Let P be the same as in part b, Q be the statement "17 is prime", R be the statement "7;13", and S be the statement "81 is a perfect square". The proposition can then be written as $(P \wedge Q) \vee (R \wedge S)$. Q, R and S are all true, so the proposition is true.
 - (f) Proposition. If P is the statement "2 is rational", Q be the statement " π is irrational" and R be the statement " 2π is rational", we can write the proposition as $(P \land Q) \lor R$. Since P and Q are both true, the entire proposition is true.
 - (g) Proposition. Let P be the statement " 5π is rational", Q be the statement "4.9 is rational", and R be the statement "There are exactly four primes less than 10". Then the proposition is $(P \land Q) \lor R$. Since R is true (2, 3, 5, and 7 are the four primes less than 10), the proposition is true.
 - (h) Proposition. If P is the statement "-3.7 is rational", Q is the statement " $3\pi < 10$ " and R is the statement " $3\pi > 15$ ", then we can write the proposition as $P \wedge (Q \vee R)$. Since P is true and Q is true, the entire proposition is true.
 - (i) Proposition. Let P be the statement "39 is prime" and Q be the statement "64 is a power of 2". The proposition can then be written as $\sim (P \lor Q)$. Since P is true and Q is true, $P \lor Q$ is also true and the entire proposition is false.
 - (j) Not a proposition. (it's actually a paradox)

3.	(d)	(h)	(j)
	· /	· /	(0)

Р	Q	$Q \vee \sim Q$	$P \wedge (Q \vee \sim Q)$
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	F
F	F	Т	F

Р	Q	$\sim P \wedge \sim Q$
Т	Т	F
Т	F	F
F	Т	F
F	F	Т

Р	Q	R	$(P \land Q) \lor (P \land R)$
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	F
F	F	Т	F
F	F	F	F

- 6. Can create a truth table or argue using properties of propositions.
 - (a) Not equivalent.
 - (b) Not equivalent.
 - (c) Not equivalent.
 - (d) Not equivalent.
 - (e) Not equivalent.
 - (f) Equivalent.
- 7. (a) P is the statement "gold is a metal". The proposition is then $\sim \sim P$, which is true.
 - (e) P is the statement "51 divides 153"; Q is the statement "51 is prime", and R is the statement "51 is a divisor of 409". The proposition is then $P \wedge (\sim Q \lor \sim R)$, which is true.
 - (g) P is the statement " $-5 \in \mathbb{N}$ "; Q is the statement " $13 \in \mathbb{N}$ "; R is the statement " $4 \in \mathbb{Q}$ ". Then the proposition is $\sim (P \land Q) \land \sim R$. This is true.