MAT 108 Homework 2 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 1.2 #7de, 10bd, 12d, 16bd

7. You might want to include additional columns in your truth table to help with your computations.(d)

Р	Q	$(P \lor Q) \implies (P \land Q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

(e)

Р	Q	R	$(P \land Q) \lor (P \land R) \implies P \lor R$
Т	Т	Т	Т
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

- 10. (b) n is prime $\implies n = 2 \lor n$ odd.
 - (d) det $B = 0 \implies B$ is square and not invertible.
- 12. (d) Using properties of propositions, we can give the following sequence of equivalent propositions:

$$\begin{array}{lll} P \implies (Q \lor R) \text{ is equivalent to } &\sim P \lor (Q \lor R) \\ & \text{ is equivalent to } &\sim P \lor (R \lor Q) \\ & \text{ is equivalent to } (\sim P \lor R) \lor Q \\ & \text{ is equivalent to } &\sim (\sim P \lor R) \Longrightarrow Q \\ & \text{ is equivalent to } (P \land \sim R) \Longrightarrow Q \end{array}$$

Comparing truth tables is also a good way to show the statements are equivalent.

- **15.** (b) Converse: If n = 2 or n is odd, then n is prime. False. Contrapositive: If $n \neq 2$ and n is even, then n is not prime. True.
 - (d) Converse: B is square and not invertible $\implies \det B = 0$. Trye. Contrapositive: B is not square or invertible implies $\det B \neq 0$. True (as long as you're okay with det not being defined for non-square matrices).

16. (b) Tautology

(d) Neither.