MAT 108 Homework 3 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 1.5 #3f, 6e, 9, 12ace

- **3**. Let $x, y \in \mathbb{Z}$. Prove by contraposition.
 - (f) If xy is odd, then x and y are both odd.

Solution: Let x and y be integers. Suppose that x and y are not both odd. Then at least one of x and y is even. Without loss of generality,¹ we will assume that x is even. By definition, x = 2m for some integer $m \in \mathbb{Z}$. Then the product xy = 2my. Since y is also an integer, the product my is an integer as well. Therefore, xy is a multiple of 2, hence even. We have shown that if x and y are not both odd, then their product xy is even. Thus, if xy is odd, then x and y must both be odd.

- **6.** Let $x, y \in \mathbb{Z}_{>0}$. Prove by contradiction.
 - (e) If a < b and ab < 3, then a = 1.

Solution: Let a and b be positive integers satisfying a < b and ab < 3, and assume towards a contradiction that $a \neq 1$. Since a is positive, we know by definition that a > 0. Therefore, $a \neq 1$ implies that a > 1.² Moreover, since a is an integer, a > 1 implies $a \ge 2$. Similarly, a < b implies that $b \ge 3$. Therefore, $ab \ge 6$ by the properties of inequalities. But $ab \ge 6$ contradicts ab < 3, so our original assumption that $a \neq 1$ was false. Thus a < b and ab < 3 implies a = 1.

9. Prove by contradiction that $n \in \mathbb{N}$ implies $\frac{n}{n+1} > \frac{n}{n+2}$.

Solution: Let $n \in \mathbb{N}$ and assume towards a contradiction that $\frac{n}{n+1} \leq \frac{n}{n+2}$. Cross multiplying, we have that $(n+2)n \leq (n+1)n$. If we apply the distributive property, our inequality becomes $n^2 + 2n \leq n^2 + n$. We can then subtract n^2 from both sides to get $2n \leq n$. Since n is a natural number, dividing both sides by n implies $2 \leq 1$. This is a contradiction. Therefore, our original assumption was false and

$$\frac{n}{n+1} > \frac{n}{n+2}$$

12. Grade the given proofs

Grades:

- (a) F. The statement " m^2 is not odd implies m is not odd" is not equivalent to the original claim.
- (c) A. This proof is good so long as the proof writer has already proven elsewhere that the sum or difference of even numbers is even.
- (e) C. The argument is correct, but the proof is missing a conclusion and the fact that $2j^2 + 2j + 2k^2$ is an integer has not been stated.

¹The phrase 'without loss of generality' means that we could have chosen y to be even and made the exact same argument. The other thing that I haven't said explicitly is that this argument also works if both x and y are even. Of course, it's completely acceptable to argue case by case (First, if x is even..., Now if y is even...).

²You might want to cite the trichotomy property here if you were particularly careful.