MAT 108 Homework 8 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 1.8 #7ac, 17e, 21cdf

- **7**. Let $a, b, c \in \mathbb{N}$ and gcd(a, b) = d. Prove that
 - (a) a divides b if and only if d = a.

Solution: Let $a, b \in \mathbb{N}$ with gcd(a, b) = d and suppose that a|b. Then we we have b = ka for some $k \in \mathbb{N}$. Since d is the gcd of a and b, we can also write a = md and b = nd where m and n are natural numbers. Putting these equalities together, we have

$$b = ka = k(md).$$

Since k is an natural number, the above equalities imply that md|b and since a = md, we certainly have md|a. By the definition of gcd, $md \leq d$, so we must have $m \leq 1$ and $m \in \mathbb{N}$, i.e., m = 1. Therefore, a|b implies d = a.

Now, suppose instead that d = a. Then, by definition of gcd, d|b, so it immediately follows that a|b. Thus, a|b if and only if d = a.

(c) if c divides a and c divides b, then $gcd(a/c, b/c) = \frac{d}{c}$. In particular, $gcd(\frac{a}{d}, \frac{b}{d}) = 1$. Solution:

Let $a, b, c \in \mathbb{N}$ with gcd(a, b) = d and suppose that c divides both a and b. Since c is a common divisor of both a and b, and gcd(a, b) = d, we know that $c \leq d$. Our first goal is to show that c|d: By definition of the gcd, we have $m_1d = a$ and $m_2d = b$ for $m_1, m_2 \in \mathbb{N}$. Therefore, we can write $\frac{m_1d}{c} = \frac{a}{c}$ and $\frac{m_2d}{c} = \frac{b}{c}$, where $\frac{a}{c}$ and $\frac{b}{c}$ are natural numbers. If we suppose that $c \mid /d$, then $\frac{m_1}{c}$ and $\frac{m_2}{c}$ then must be natural numbers as well, since $\frac{m_id}{c}$ is equal to a natural number and $c \mid /d$. If we clear denominators on the right of the equations, we have $\frac{m_1}{c}(cd) = a$ and $\frac{m_2}{c}(cd) = a$. Since $\frac{m_i}{c}$ is a natural number, it follows that cd divides both a and b. Since c does not divide d, we know that $c \neq 1$, so cd > d. But this contradicts the definition of gcd, so therefore we must have c|d.

Since $\frac{d}{c}$ is a natural number, the equations $\frac{m_1d}{c} = \frac{a}{c}$ and $\frac{m_2d}{c} = \frac{b}{c}$ imply that $\frac{d}{c}$ divides both $\frac{a}{c}$ and $\frac{b}{c}$. Therefore it only remains to show that any other factor of $\frac{a}{c}$ and $\frac{b}{c}$ is less than or equal to $\frac{d}{c}$ in order to prove the original statement.

Let $k \in \mathbb{N}$ be a common factor of both $\frac{a}{c}$ and $\frac{b}{c}$. Then we can write $n_1k = \frac{a}{c}$ and $n_2k = \frac{b}{c}$ for $n_1, n_2 \in \mathbb{N}$. Multiplying by c on both sides of these equations, we have $n_1(ck) = a$ and $n_2(ck) = b$, which tells us that ck|a and ck|b. Therefore, by definition of gcd, $ck \leq d$. Dividing by c, we get $k \leq \frac{d}{c}$. Thus, we have shown that $\frac{d}{c}$ is a common factor of $\frac{a}{c}$ and $\frac{b}{c}$ and any other common factor is less than or equal to $\frac{d}{c}$. Hence, $gcd(a/c, b/c) = \frac{d}{c}$.

If we set c = d, then the original statement immediately implies $gcd(\frac{a}{d}, \frac{b}{d}) = d/d = 1$.

17. Let $a, b, c \in \mathbb{N}$ with gcd(a, b) = d and lcm(a, b) = m. Prove that

(e) for every natural number n, lcm(an, bn) = mn.

Solution: Let $a, b, n \in \mathbb{N}$ with $\operatorname{lcm}(a, b) = m$. Then there exist $s, t \in \mathbb{N}$ such that sa = tb = m. Therefore, (sa)n = (tb)n = mn, so mn is a common multiple of an and bn. In order to show that mn is the *least* common multiple, consider some other common multiple k of an and bn. Then there exist natural numbers $s', t' \in \mathbb{N}$ such that s'an = t'bn = k. Since s't, and t'b are integers, this expression tells us that n|k. Therefore, $s'a = t'b = \frac{k}{n}$. By definition, this implies that $\frac{k}{n} \ge m$, from which it follows that $k \ge mn$. Thus, mn is the lcm of an and bn, as desired.

- **21.** 'Grade' the following proofs:
 - (c) (see textbook for proof)Solution: C. The proof has all of the right ideas, but does not explicitly show divisibility by 3 for the two cases.
 - (d) (see textbook for proof) Solution: A. Good proof by contradiction.
 - (f) (see textbook for proof)Solution: A. Proof is good so long as we assume the result from 17f.