MAT 108 Homework 11 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 2.2 #1j, 2i, 9e, 10d, 11df, 20abc

- **1**. Let $A = \{1, 3, 5, 7, 9\}, B = \{0, 2, 4, 6, 8\}, C = \{1, 2, 4, 5, 7, 8, \}$ and $D = \{1, 2, 3, 5, 6, 7, 8, 9, 10\}$. Find
 - (j) $(A \cup B) (C \cap D)$. Solution: Given A, B, C, and D as above, we have $A \cup B$ is the set of integers between 0 and 9, while $C \cap D = \{1, 2, 5, 7, 8\}$. Then $(A \cup B) (C \cap D) = \{0, 3, 4, 6, 9\}$.
- **2**. Let the universe be all real numbers. Let $A = [3, 8), B = [2, 6], C = (1, 4), \text{ and } D = (5, \infty)$. Find
 - (i) $(A \cup C) (B \cap D)$ Solution: Given A, B, C, and D as above, we have $A \cup B = [2, 8)$, while $C \cap D = \emptyset$. Then $(A \cup B) (C \cap D) = A \cup B = [2, 8)$.
- **9**. Let A, B, and C be sets. Prove that
 - (e) (A-B)-C=(A-C)-(B-C). Solution: Let A, B, C be sets and first consider $x \in (A B) C$. Then $x \in A B$ and $x \notin C$. Since $x \in A B$, we know that $x \in A$ and $x \notin B$. Therefore, $x \in A C$ and $x \notin B C$. Therefore, $x \in (A C) (B C)$, so $(A B) C \subseteq (A C) (B C)$. Now, consider $x \in (A - C) - (B - C)$. Then $x \in (A - C)$ and $x \notin (B - C)$. Therefore, $x \in A$ and $x \notin C$. Since $x \notin B - C$ and $x \notin C$, we can conclude that $x \notin B$. It follows that $x \in A - B$. Then $x \notin C$, and $x \in A - B$ implies $x \in (A - B) - C$, so $(A - C) - (B - C) \subseteq (A - B) - C$. Thus, since we have shown both sets contain each other, (A - B) - C = (A - C) - (B - C).
- 10. Let A, B, C, and D be sets. Prove that
 - (d) if $C \subseteq A$ and $D \subseteq B$, then $D A \subseteq B C$. Solution: Ask for solution on Piazza or in James's office hours.
- **11**. Provide counterexamples for each of the following.
 - (d) $\mathcal{P}(A) \mathcal{P}(B) \subseteq \mathcal{P}(A-B)$. Solution: Let $A = \{x, y\}$ and $B = \{y, z\}$. Then $\mathcal{P}(A) = \{\{x\}, \{y\}, \{x, y\}\}$ and $\mathcal{P}(B) = \{\{y\}, \{z\}, \{y, z\}\}$, so $\mathcal{P}(A) - \mathcal{P}(B) = \{\{x\}, \{x, y\}\}$. But A - B = x, so $\mathcal{P}(A - B) = \{\{x\}\}$, which does not contain $\{\{x\}, \{x, y\}\}$.
 - (f) A-(B-C)=(A-B)-C. Solution: Let $A = \{x, y, z\}$, $B = \{y, z\}$ and $C = \{x, y\}$. Then $A (B C) = A \{z\} = \{x, y\}$ while $(A B) C = \{x\} C = \emptyset$.
- 20. 'Grade' the following proofs:
 - (a) (see textbook for proof)

Solution: F. It's not quite clear why x would not be in some arbitrary set C. The attempted proof does not clearly show the implication in the claim.

(b) (see textbook for proof)

Solution: C. The attempted proof is a little hard to read, but if you replace the statement 'Suppose A - C' with 'Suppose $x \in A - C$ ' and similarly for the B - C later in the proof, the argue is mostly complete.

(c) (see textbook for proof)

Solution: C. The attempted proof fails to define x in the beginning and is a bit fast and loose with where x lives throughout. The argument is about as difficult to follow as the attempted proof in part b, but is mostly there.