
MAT 108 Homework 14 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 2.5 #1a, 3, 7b, 12, 14cde

1. Use the PCI to prove that

(a) every natural number greater than or equal to 11 can be written in the form 2s + 5t for some
natural numbers s and t.

Solution: (base case) Let n = 11. Then we can write 11 = 2(3) + 5(1) where 3, 1 ∈ N. Similarly,
we can write 12 = 2(1)+5(2) for 1, 2 ∈ N. Therefore, the statement is true for n = 11 and n = 12.

(induction step) Assume that we can write any number 11 ≤ k < n in the form k = 2s + 5t for
some s, t ∈ N. We must show that we can write n = 2s0 +5t0 for some s0, t0 ∈ N. By the inductive
hypothesis, we know that we can write n − 2 = 2s1 + 5t1 for some s1, t1 ∈ N. Rearranging this
expression, we have

n = 2s1 + 5t1 + 2 = 2(s1 + 1) + 5t1.

Since s1 + 1 ∈ N, we have shown that if the statement is true for 11 ≤ k < n, then the statement
is true for k = n. Thus, by the PCI, the statement is true for all natural numbers n ≥ 11.

3. Let a1 = 2, a2 = 4, and an+2 = 5an+1−6an for all n ≥ 1. Prove that an = 2n for all natural numbers n.

Solution: (base case) Let a1 = 2, a2 = 4, and an+2 = 5an+1 − 6an for all n ≥ 1. We have a1 = 21 = 2
and a2 = 22 = 4, so the statement is true for n = 1 and n = 2.

(induction step) Assume that ak = 2k for all natural numbers 1 ≤ k < n. By definition, we can write
an = 5an−1 − 6an−2. Applying the inductive hypothesis, we have an−1 = 2n−1 and an−2 = 2n−2, so

an = 5(2n−1)− 6(2n−2) = 10(2n−2)− 6(2n−2) = 4(2n−2) = 2n.

Therefore, if the statement is true for all k < n, then the statement is true for k = n. Thus, by the
PCI, an = 2n.

7. Use the PCI to prove the following properties of Fibonacci numbers:

(b) fn+6 = 4fn+3 + fn for all natural numbers n.

Solution: (base case) Let fn denote the nth Fibonacci number. Since f7 = 13, f4 = 3, and
f1 = 1, we have f7 = 4(3) + 1 = 13, so the claim is true for n = 1. Similarly, f8 = 21, f5 = 5, and
f2 = 1, and f8 = 4(5) + 1 = 21, so the claim is true for n = 2 as well.

(induction step) Assume that fk+6 = 4fk+3 + fk for all 1 ≤ k < n. We must show that fn+6 =
4fn+3 + fn. By the definition of Fibonacci numbers, we can write fn+6 as fn+5 + fn+4. Applying
the inductive hypothesis to each of these, we have

fn+6 = fn+5+fn+4 = (4fn+2+fn−1)+(4fn+1+fn−2) = 4(fn+2+fn+1)+(fn−1+fn−2) = 4fn+3+fn.

Therefore, if the statement is true for all k < n, the statement is true for k = n as well. Thus, by
the PCI, fn+6 = 4fn+3 + fn.

12. Let the “Fibonacci-2” numbers gn be defined as follows:

g1 = 2, g2 = 2, and gn+2 = gn+1gn for all n ≥ 1.
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(a) Calculate the first five “Fibonacci-2” numbers.

Solution: g1 = 2, g2 = 2, g3 = 4, g4 = 8, g5 = 32.

(b) Show that for all n ∈ N, gn = 2fn .

Solution: (base case) Let gn be the Fibonacci-2 numbers defined above. Then g1 = 2 = 21, and
g2 = 2 = 21, so gi = 2fi for i = 1, 2.

(induction step) Assume that gk = 2fk for all 1 ≤ k < n. We must show gn = 2fn . By definition,
we can write gn = gn−1gn−2. Applying the inductive hypothesis to each factor, we have

gn = gn−1gn−2 = 2fn−12fn−2 = 2fn−1+fn−2 .

By the definition of the Fibonacci numbers, 2fn−1+fn−2 = 2fn . Therefore, if the statement is true
for all 1 ≤ k < n, then the statement is true for k = n. Thus, by the PCI, gn = 2fn .

14. ’Grade’ the following proofs:

(c) (see textbook for proof)

Solution: F. Claim is false. The first two Fibonacci numbers are both odd and the attempted
proof does not establish a base case.

(d) (see textbook for proof)

Solution: C. Claim is true, but the attempted proof does not establish a base case and is difficult
to follow/has significant gaps in the induction step.

(e) (see textbook for proof)

Solution: F. The claim is false and the attempted proof only shows one base case instead of two.
Note: two base cases are necessary because the attempted proof uses the inductive hypothesis for
m− 1 and m− 2.
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