MAT 108 Homework 15 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 1.3 #10ijk Section 1.8 #12 Section 2.3 #9d Section 2.4 #5i

10. Which of the following are true in the universe of all real numbers?

(i) $(\exists !x)(\forall y)(x = y^2).$

Solution: False. No such x exists.

(j) $(\forall y)(\exists !x)(x = y^2).$

Solution: True. Square of a real number is well-defined.

(k) $(\exists !x)(\exists !y)(\forall w)(w^2 > x - y).$

Solution: False. Choice of x and y is not unique. Just take y > x.

12. Let a be an integer and p and q be distinct primes such that p divides a and q divides a. Prove that pq divides a.

Solution: Let a be an integer and p and q be distinct primes both dividing a. Since p divides a, we can write ps = a for some $s \in \mathbb{Z}$. Since q is prime and divides a = ps, we can apply Euclid's lemma to conclude that q divides p or q divides s. p and q were assumed to be distinct, so $q \not| p$, from which it follows that q divides s. Therefore, we can write qt = s for some $t \in \mathbb{Z}$. Together, this yields a = pqt. Since $t \in \mathbb{Z}$, we have shown that pq|a, as desired.

- **9.** Let $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$ be a family of sets, $\Delta \neq \emptyset$ and B be a set. Prove the statement is true, or give a counterexample.
 - (d) $(\bigcup_{\alpha \in \Delta} A_{\alpha}) B = \bigcup_{\alpha \in \Delta} (A_{\alpha} B).$

Solution: Let \mathcal{A}, Δ , and B be given as in the statement of the problem.

 (\subseteq) Consider $x \in (\bigcup_{\alpha \in \Delta} A_{\alpha}) - B$. Then $x \in A_{\alpha}$ for some $\alpha \in \Delta$ and $x \notin B$. Therefore, $x \in A_{\alpha} - B$. Hence, $x \in \bigcup_{\alpha \in \Delta} A_{\alpha} - B$, so $(\bigcup_{\alpha \in \Delta} A_{\alpha}) - B \subseteq \bigcup_{\alpha \in \Delta} (A_{\alpha} - B)$

 (\supseteq) Let $x \in \bigcup_{\alpha \in \Delta} (A_{\alpha} - B)$. Then $x \in A_{\alpha} - B$ for some $\alpha \in \Delta$. By definition, $x \in A_{\alpha}$ and $x \notin B$. Since $x \in A_{\alpha}$, we know $x \in \bigcup_{\alpha \in \Delta} A_{\alpha}$. Since $x \notin B$, it follows that $x \in (\bigcup_{\alpha \in \Delta} A_{\alpha}) - B$. Therefore, $x \in \bigcup_{\alpha \in \Delta} (A_{\alpha} - B) \subseteq (\bigcup_{\alpha \in \Delta} A_{\alpha}) - B$. Thus, since we have shown both containments, the two sets are equal.

- 5. Use the PMI to prove the following for all natural numbers:
 - (i) For every prime p, for every natural number a, if p divides a^n then p divides a.

Solution: Let p be a prime number and a be any natural number

(base case) For n = 1, the statement becomes 'if p divides a^1 , then p divides a, which is a tautology. (induction step) Assume that $p|a^k$ implies p|a for some $k \in \mathbb{N}$. We wish to show that $p|a^{k+1}$ implies p|a. Consider a^{k+1} and factor it as $a^k \cdot a$. Since p is prime and divides a^{k+1} , Euclid's lemma implies that p divides a^k or p divides a. In the first case (i.e. $p|a^k$), the inductive hypothesis implies that p|a. Therefore, $p|a^{k+1}$ implies p|a.

Thus, if the statement is true for n = k then the statement is true for n = k + 1. Hence, by the PMI, the statement is true for all $n \in \mathbb{N}$.