MAT 108 Homework 16 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 3.1 #7adg, 10abc, 11bc, 12b, 17abc

- 7. Let $R = \{(1,5), (2,2), (3,4), (5,2)\}, S = \{(2,4), (3,4), (3,1), (5,5)\}, \text{ and } T = \{(1,4), (3,5), (4,1)\}.$ Find
 - (a) $R \circ S$.

Solution: $R \circ S = \{(3,5), (5,2)\}$

(d) $R \circ R$.

Solution: $R \circ R = \{(1, 2), (2, 2), (5, 2)\}$

(g) $R \circ (S \circ T)$.

Solution: $R \circ (S \circ T) = \{(3, 2)\}$

- **10**. Let $A = \{a, b, c, d\}$. Give an example of relations R, S and T on A such that
 - (a) $R \circ S \neq S \circ R$

Solution: (Answers may vary) Take $R = \{((a, b))\}$ and $S = \{(b, a)\}$. Then $R \circ S = \{(b, b)\}$ and $S \circ R = \{(a, a)\}$.

(b) $(S \circ R)^{-1} \neq S^{-1} \circ R^{-1}$.

Solution: Take $R = \{((a, b))\}$ and $S = \{(b, a)\}$. Then $R^{-1} = \{(b, a)\}, S^{-1} = \{(a, b)\}, (S \circ R)^{-1} = \{((a, a))\}, (a \circ R^{-1}) \in \{(b, b)\}.$

(c) $S \circ R = T \circ R$, but $S \neq T$.

Solution: Take $R = \{((a, b))\}, S = \{(b, a)\}$, and $T = \{(b, a), (c, d)\}$. Then we have $S \circ R = T \circ R = \{(b, b)\}$, but $S \neq T$.

- **11**. Let R be a relation from A to B and S be a relation from B to C.
 - (b) Prove that $Dom(S \circ R) \subseteq Dom(R)$.

Solution: Let A, B, C, R and S be given as in the statement of the problem and suppose we have some $a \in \text{Dom}(S \circ R)$. By definition, there exists some $c \in C$ such that $(a, c) \in S \circ R$. Therefore, there exists some $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. Since $(a, b) \in R$, we have that $a \in \text{Dom}(R)$, again by definition. Thus, $\text{Dom}(S \circ R) \subseteq \text{Dom}(R)$.

(c) Show by example that $Dom(S \circ R) = Dom(R)$ may be false.

Solution: (Answers may vary) Take $A = B = C = \{1, 2, 3\}$ and define the relations $R = \{(1, 2), (2, 3)\}$ and $S = \{(2, 1)\}$. Then $Dom(S \circ R) = \{1\}$, while $Dom(R) = \{1, 2\}$

- 12. Complete the proof of Theorem 3.1.2 by proving that if R is a relation from A to B and S is a relation from B to C, then
 - (b) $R \circ I_A = R$.

Solution: Ask for solution on Piazza or in James's office hours.

- 17. 'Grade' the following proofs:
 - (a) (see textbook for proof)Solution: F. The claim is false and the first if and only if of the attempted proof is false.
 - (b) (see textbook for proof) Solution: F. The claim is false and there the attempted proof assumes the existence of the relation $(x, y) \in R$ when it's possible that no such relation exists.
 - (c) (see textbook for proof) Solution: F. The overall claim is false and the claim in the proof that x = y is not true in general.