MAT 108 Homework 17 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 3.2 #1bgi, 2g, 3g, 4a, 8bc, 19abc

- 1. Indicate which of the following relations on the given sets are reflexive on the given set, which are symmetric, and which are transitive.
 - (b) \leq on \mathbb{N} .

Solution: Reflexive $(x \le x)$, Transitive $(x \le y, y \le z \implies x \le z)$, not symmetric $(x \le y \not\Longrightarrow y \le x$ in general)

(g) "divides" on \mathbb{N}

Solution: Reflexive (x|x), Transitive $(x|y, y|z \implies x|z)$, not symmetric $(x|y \not\implies y|x \text{ in general})$

(i) $\{(1,5), (5,1), (1,1)\}$ on the set $A = \{1, 2, 3, 4, 5\}$

Solution: Not reflexive $((2,2) \notin A)$, Symmetric, not transitive ((5,1) and (1,5) in A but (5,5) not in A)

- **2.** Let $A = \{1, 2, 3\}$. List the ordered pairs, and draw the digraph of a relation on A with the given properties.
 - (g) Not reflexive, symmetric, and transitive

Solution: (Answers may vary) $R = \{(1,2), (2,1), (2,2), (1,1)\}$. Not reflexive because (3,3) not in R.

Ask in OHs or on Piazza for digraph.

- **3**. For each part of Exercise 2, give an example of a relation on \mathbb{R} with the desired properties.
 - (g) Not reflexive, symmetric, and transitive

Solution: $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | xy > 0\}$. *R* is not reflexive because $(0, 0) \notin R$, *R* is symmetric because xy = yx, so $(x, y) \in R$ implies $(x, y) \in R$. Finally, *R* is transitive because xy > 0 and yz > 0 implies xz > 0.

Quick justification for the last fact: xy > 0 implies x, y either both positive or both negative. Similarly for y, z. Therefore, x and z are either both positive or both negative, so xz > 0.

- 4. The properties of reflexivity, symmetry, and transitivity are related to the identity relation and the operations of inversion and composition. Prove that
 - (a) R is a reflexive relation on A if and only if $I_A \subseteq R$.

Solution: (\implies) Let R be a reflexive relation on A and let (x, y) be an element in I_A . By the definition of the Identity relation, we must have y = x, so (x, y) = (x, x). Moreover, since R is reflexive and $x \in A$ we must also have $(x, x) \in R$. Therefore, $I_A \subseteq R$.

 (\Leftarrow) Now let R be a relation on A and assume $I_A \subseteq R$. By definition of the identity relation, we must have $(x, x) \in I_A$ for all $x \in A$. Since $I_A \subseteq R$, this implies $(x, x) \in R$ for all $x \in A$. This is precisely the definition of reflexivity, so therefore, $I_A \subseteq R$ implies R is reflexive. Since we have shown both implications, it follows that R is reflexive if and only if $I_A \subseteq R$.

- 8. Which of the digraphs pictured in the textbook represent relations that are (i) reflexive on the given set (ii) symmetric? (iii) transitive?
 - (b) Reflexive, not transitive, not symmetric

Solution:

(c) Reflexive, transitive, and symmetric

Solution:

- 19. 'Grade' the following proofs:
 - (a) (see textbook for proof) Solution: F. Claim is false. Does not show that $(x, x) \in R$ for all x.
 - (b) (see textbook for proof) Solution: F. To show T is symmetric, we need to show that if (x, y)T(r, s), then (r, s)T(x, y).
 - (c) (see textbook for proof) Solution: A.