MAT 108 Homework 20 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 4.1 #1, 2, 6bd, 18ab, 19cd

- 1. Which of the following relations are functions? For those relations that are functions, give the domain and two sets that could be a codomain.
 - (a) $\{(0, \Delta), (\Delta, \Box), (\Box, \cap), (\cap, \cup), (\cup, 0)\}$

Solution: Function with domain $\{0, \triangle, \Box, \cap, \cup, 0\}$. Codomain could be $\{0, \triangle, \Box, \cap, \cup, 0\}$ or the set of set operations union $\{0, \Box\}$.

(b) $\{(1,2), (1,3), (1,4), (1,5), (1,6)\}$

Solution: Not a function.

(c) $\{(1,2),(2,1)\}$

Solution: Function with domain $\{1, 2\}$. Codomain could be $\{1, 2\}$ or \mathbb{N} .

(d) $\{(x,y) \in \mathbb{R} \times \mathbb{R} : x = \sin y\}$

Solution: Not a function. This relation has (0,0) and $(0,2\pi)$.

(e)
$$\{(x, y) \in \mathbb{N} \times \mathbb{N} : x \le y\}$$

Solution: Not a function. This relation has (1,1) and (1,2)

(f)
$$\{(x,y) \in \mathbb{Z} \times \mathbb{Z} : y^2 = x\}$$

Solution: Not a function. This relation has (1, 1) and (1, -1).

(g) $\{(x,y) \in \mathbb{N} \times \mathbb{N} : x^2 + y^2 < 5\}$

Solution: Not a function.

(h) $\{(x,y) \in \mathbb{N} \times \mathbb{N} : 2^x = 4^y\}$

Solution: Not a function. The domain is not \mathbb{N} .

(i) See textbook for diagram.

Solution: Not a function. The domain of the relation is not $\{a, b, c, d\}$.

(j) See textbook for diagram.

Solution: Function with domain $\{a, b, c, d\}$. Codomain could be $\{1, 2, 3, 4\}$ or \mathbb{N} .

2. Give two reasons why the "rule" $f(x) = \pm \sqrt{x}$ does not define a function from \mathbb{R} to \mathbb{R} .

Solution: Ask in OHs or on Piazza for solution.

6. (b) Let A be the set $\{1, 2, 3\}$, and let R be the relation on A given by $\{(x, y) : 3x + y \text{ is prime}\}$. Prove that R is a function with domain A.

Solution: Let A and R be as given in the statement of the problem. We have three cases:

- When x = 1, we have that for $y \in A$, 3x + y is 4, 5, or 6. Only one of these is prime, so we have the pair $(1, 2) \in R$ and no other pair in R is of the form (1, y) for $y \in A$.
- When x = 2, we have that 3x + y is 7, 8, or 9. 7 is prime, so we have $(2, 1) \in R$ and no other pair is of the form (2, y) for $y \in A$ because 8 and 9 are not prime.
- When x = 3, we have that 3x + y is 10, 11, or 12. 11 is prime, so we have $(3, 2) \in R$ and no other pair in R is of the form (3, y) for $y \in A$ because 10 and 12 are not prime.

Therefore, $R = \{(1,2), (2,1), (3,2)\}$ and satisfies $(x,y), (x,z) \in R$ implies y = z. Thus R is a function with domain A.

(d) Let $R = \{(x, y) \in \mathbb{N} \times \mathbb{N} : 2x^2 - y = 1\}$. Prove that R is a function with domain \mathbb{N} .

Solution: Let R be given as in the statement of the problem. Suppose we have pairs $(x, y), (x, z) \in R$. Then by definition, $2x^2 - y = 1$ and $2x^2 - z = 1$. Therefore, $2x^2 - y = 2x^2 - z$. Subtracting $2x^2$ from both sides of this equation yields y = z. Moreover, for any $x \in \mathbb{N}$, we can solve for y to get $y = 2x^2 - 1$ because $x \in \mathbb{N}$ is at least one. Hence the domain of R is all of \mathbb{N} . Thus, we have shown that R is a function on \mathbb{N} .

18. (a) Let f be a function from A to B. Define the relation T on A by xTy iff f(x) = f(y). Prove that T is an equivalence relation on A.

Solution:Let f, T, A, B be as in the statement of the problem.

- reflexive: Let x in A. Then f(x) = f(x) because f is a function, so xTX and T is reflexive.
- symmetric: Let $x, y \in A$ such that xTy. Then f(x) = f(y) = f(x), so yTx. Therefore, T is symmetric.
- transitive: Let $x, y, z \in A$ such that xTy and yTz. Then f(x) = f(y) and f(y) = f(z). By the transitivity of equality, f(x) = f(z), so xTz. Therefore T is transitive.

Thus, since T is reflexive, symmetric and transitive, T is an equivalence relation.

(b) In the case when $f : \mathbb{R} \to \mathbb{R}$ is given by $f(x) = x^2$ describe the equivalence class of 0; of 2; of 4.

Solution: f(0) = 0 and no other $x \in \mathbb{R}$ satisfies f(x) = 0, so $\overline{0} = \{0\}$. f(2) = f(-2) = 4, so $\overline{2} = \{\pm 2\}$. f(4) = f(-4) = 16, so $\overline{4} = \{\pm 4\}$.

- 19. 'Grade' the following proofs:
 - (c) (see textbook for proof)

Solution: C. Proof is missing some details. The vertical line test is okay for intuition, but not a formal proof (see remarks at the top of page 206 in the text).

(d) (see textbook for proof) Solution: A. Proof is good.