MAT 108 Homework 25 Solutions

Problems are from A Transition to Advanced Mathematics 8th edition by Smith, Eggen, and Andre.

Section 5.1 #1, 4, 5, 8a, 13, 22bd

1. Prove Theorem 5.1.1. That is, show that the relation \approx is reflexive, symmetric, and transitive on the class of all sets.

Solution: reflexive: Let S be a set. The identity function $id_S : S \to S$ is a bijection, so $S \approx s$. Therefore \approx is reflexive.

symmetric: Let S and T be sets such that $S \approx T$. By definition, we have a bijection $f: S \to T$. Since f is a bijection, there exists a bijective inverse $f^{-1}: T \to S$. Therefore, $T \approx S$ and \approx is symmetric.

transitive: Let S, T, and U be sets with $S \approx T$ and $T \approx U$. Then, there exists a bijection $f : S \to T$ and a bijection $g : T \to U$. The composition of two bijections is again a bijection, so $g \circ f : S \to U$ is a bijection and $S \approx U$. Therefore, \approx is transitive.

Thus, since \approx is reflexive, symmetric, and transitive, \approx is an equivalence relation on sets.

4. Complete the proof that any two open intervals (a, b) and (c, d) are equivalent by showing that $f(x) = \left(\frac{d-c}{b-a}\right)(x-a) + c$ maps one-to-one and onto (c, d).

Solution: Let $f: (a,b) \to (c,d)$ be given by $f(x) = \left(\frac{d-c}{b-a}\right)(x-a) + c$.

1-1: Suppose we have some $x, y \in (a, b)$ such that $f(x) = f(y) \in (c, d)$. Then by definition

$$\left(\frac{d-c}{b-a}\right)(x-a) + c = \left(\frac{d-c}{b-a}\right)(y-a) + c.$$

Adding -c to both sides, dividing by $\frac{d-c}{b-a} \neq 0$, and adding a implies that x = y. Therefore, f is injective/1-1.

onto: Let $x \in (c, d)$. Choose $y = \frac{b-a}{d-c}(x-c) + a$. Note that $c \neq d$, so our function is well-defined. Note further that our choice of y is in the interval (a, b) because $c \leq x \leq d$ implies $a \leq y \leq b$. With this choice of y, we have

$$f(y) = \left(\frac{d-c}{b-a}\right)(y-a) + c = \left(\frac{d-c}{b-a}\right)\left(\frac{b-a}{d-c}(x-c) + a - a\right) + c = x.$$

Thus, f is surjective/onto. Hence since f is injective and surjective, it is bijective.

5. Complete the proof of Lemma 5.1.2(b) by showing that if h : A → C and g : B → D are one-to-one correspondences, then f : A×B → C×D given by f(a, b) = (h(a), g(b)) is a one-to-one correspondence.
Solution: Let h : A → C and g : B → D be bijections and define f : A×B → C×D as in the statement of the problem. 1-1: Let (a₁, b₁), (a₂, b₂) ∈ A×B be such that f(a₁, b₁) = f(a₂, b₂). Then by definition, h(a₁) = h(a₂) and g(b₁) = g(b₂). Since h and g are both bijections, they are, in particular, 1-1/injective, so a₁ = a₂ and b₁ = b₂. Therefore, (a₁, b₁) = (a₂, b₂) and f is bijective.

onto: Let $(x, y) \in C \times D$. since h and g are both surjective, there exists some $a \in A$ such that h(a) = x and some $b \in B$ such that g(b) = y. Choose $(a, b) \in A \times B$. Then f(a, b) = (x, y) and f is surjective. Thus, since f is both 1-1/injective and onto/surjective, f is bijective.

8. Complete the proof of Theorem 5.1.7 by proving that

(a) if A and B are finite sets, then $\overline{\overline{A \cup B}} = \overline{\overline{A}} + \overline{\overline{B}} - \overline{\overline{A \cap B}}$.

Solution: Let A and B be finite sets. Then $B \approx \mathbb{N}_k$ for $\in \mathbb{N} \cup \{0\}$. Using our properties of sets, we can rewrite $A \cup B$ as $A \sqcup (B - A \cap B)$ where A and $B - A \cap B$ are disjoint (\sqcup is just notation for disjoint union). Since A and B are both finite, their intersection is finite, so we have $A \cap B \approx \mathbb{N}_j$ for $j \leq k$. Furthermore, $B \cap A \subseteq B$ implies that $\overline{B - B \cap A} = k - j$ by repeated application of Lemma 5.1.8.

Since A and $B - A \cap B$ are disjoint, Theorem 5.1.7(A) implies

$$\overline{\overline{A \cup B}} = \overline{\overline{A \sqcup B - A \cap B}} = \overline{\overline{A}} + \overline{\overline{B - A \cap B}} = \overline{\overline{A}} + (k - j) = \overline{\overline{A}} + \overline{\overline{B}} - \overline{\overline{A \cap B}}$$

13. Prove that if r > 1 and $x \in \mathbb{N}_r$ then $\mathbb{N}_r - \{x\} \approx \mathbb{N}_{r-1}$ (Lemma 5.1.8). Solution: Ask on Piazza for solution.

- 22. 'Grade' the following proofs:
 - (b) (see textbook for proof) **Solution:** C. It's not clear from the notation that \mathbb{N}_k is disjoint from $\mathbb{N}_{\{1\}}$. We require that they be disjoint because otherwise their union would be \mathbb{N}_k again.
 - (d) (see textbook for proof)Solution: F. The claim is false. Theorem 5.1.7 only applies to a union of a finite number of sets.