Math 108 Spring 2020 Practice Midterm To receive full credit you must show all of your work.

- 1. If P, Q and R are propositions then take S to be the proposition $S = (P \lor (\sim Q)) \land R$.
 - (a) Write out the truth table for S.

	Р	T	T	T	T	F.	F.	F.	\mathbf{F}
ANS:	Q	Т	Т	\mathbf{F}	\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}
	R	Т	\mathbf{F}	Т	\mathbf{F}	Т	\mathbf{F}	Т	F
	\mathbf{S}	Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	F	Т	F

- (b) Find truth values for P, Q and R so that the truth value of S differs from that for R.
 ANS: Only P being F, Q being T and R being T works.
- 2. (Same as 1): If A, B and C are sets then take D to be the set $D = (A \cup B^c) \cap C$.
 - (a) Sketch a Venn (circle) diagram for D.
 - (b) Find an example of sets A, B and C for which D differs from C. **ANS:** A empty and $B = C = \{a\}$ works.
- 3. For each statement below decide which of the universes \mathbb{N} , \mathbb{Z} and \mathbb{R} it is true in.
 - (a) $(\forall a)(\forall b)5a + 3b = 11$. **ANS:** none
 - (b) $(\forall a)(\exists b)5a + 3b = 11$. **ANS:** only \mathbb{R}
 - (c) $(\exists a)(\forall b)5a + 3b \neq 11$. **ANS:** (negation of b) both \mathbb{N} and \mathbb{Z}
 - (d) $(\exists !a)(\exists b)5a + 3b = 11$. **ANS:** only \mathbb{N}
 - (e) $(\exists a)(\exists b)5a + 3b = 11$. **ANS:** all three
 - (f) $(\exists a)(\exists b)6a + 3b = 11$. **ANS:** only \mathbb{R}
- 4. Prove that if a and b are integers then ab is even iff either a is even or b is even.

ANS: Sketch: This has the form $(P \iff Q_1 \lor Q_2)$ which is equivalent to $(P \implies Q_1 \lor Q_2 \text{ and } Q_1 \lor Q_2 \implies P)$ which is equivalent to $(Q_1 \lor Q_2 \implies P \text{ and } \sim Q_1 \land \sim Q_2 \implies \sim P).$

The first says that if 2 divides a or b then 2 divides ab which is true. The second says that if a and b are odd then ab is odd which is true since if a = 2r+1 and b = 2n+1 then ab = 4rn+2r+2n+1 = 2(2rn+r+n)+1.

- 5. Every even natural number is less than its square.
 - (a) Rewrite this sentence using quantifiers and logic notation. ANS: In the universe of natural numbers $(\forall n)(n)$ is given)
 - **ANS:** In the universe of natural numbers $(\forall n)(n \text{ is even}) \implies (n < n^2)$.

(b) Prove that the sentence is true.

ANS: (This is only a sketch.) There are may ways to prove this. One would be induction taking P(n) to be the proposition that $2n < (2n)^2$. The base case is then P(1) which is 2 < 4 which is true and the induction step would be that if P(n) holds then $2(n+1) = 2n + 2 < (2n)^2 + 2 < (2n)^2 + 4n + 4 = (2(n+1))^2$ so P(n+1) holds.

6. Either prove or find a counterexample to the following statement:

If B is a set and $\mathbb{A} = \{A_{\alpha} | \alpha \in \Delta\}$ is an indexed family of sets then $B - (\bigcap_{\alpha \in \Delta} A_{\alpha}) = \bigcap_{\alpha \in \Delta} (B - A_{\alpha}).$

ANS: This is false. Consider the counterexample with $\Gamma = \{a, b\}, A_a = \{\}$ and $A_b = B = \{1\}$. In this case the left hand side is $\{1\}$ but the right hand side is $\{\}$.