MAT 108
Winter 2021
LEFT BOARD
Elem → Adv math.
Reading ad writing proofs.
Like essay structure ideas.
Eng is not precise enough.
So use predicate logic.
And some set theory.
Def: A proposition is a sentence which is true or false (T) (F) (or has a truth value).

Examples:

\[
1+1 = 3
\]

Prop \ Y it is F

This sentence is not a prop. \ Prop?

I am liar.

\[\neg \text{Prop} \]

N paradox
Lysol can kill viruses.

1. If F then the sent is a prop.
 \[\text{If } T \text{ then } \text{not a prop}\]

2. Call the sentence P.

 If P is True then P is not a prop. Is so not True False.

 If P is False then P is a prop. Not so either True False.
Using steps from Thm 1.1.1:
~P ∧ Q
by (h) \[\sim (A ∧ B) \text{ is eq. } \sim A ∨ \sim B \]
\[\sim (\sim A) \text{ is eq. } A \]
\[\sim P ∧ Q \text{ is eq. to } \sim \left[(\sim P ∧ Q) \right] \]
which is eq to

\((b) \sim [\sim (\sim P) \lor \sim Q] \sim [P \lor \sim Q] \sim [P v \sim Q] \)
Building new props from old:

\[\sim Q \quad (\sim Q) \quad \text{same} \]
\[Q \land (p \lor R) \]

<table>
<thead>
<tr>
<th>Truth tables</th>
<th>(\sim P)</th>
<th>(p \land q)</th>
<th>(p \lor q)</th>
<th>(P \Rightarrow Q)</th>
<th>(Q \Rightarrow P)</th>
<th>((\sim Q) \Rightarrow (\sim P))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(Q)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

\[\text{equivalent} \]
Note: \(P \Rightarrow Q \) and \((\neg Q) \Rightarrow (\neg P) \) are equivalent, as is the contrapositive, \(\neg P \lor Q \).

Eng

Ex:

\(P \): My dog is hungry.

\(Q \): My dog is inside.

\(P \Rightarrow Q \): If my dog is hungry then it is inside.

\(Q \Rightarrow P \): If my dog is inside then it is hungry.

\(\neg Q \Rightarrow \neg P \): If my dog is outside then it is full.

\(\neg P \lor Q \): Either my dog is full or it is inside.
1.3.4 have the same meaning.

2 is different.
Today quantifiers: Complete. First order logic notation.

Ex: Everyone I know likes chocolate or dislikes coffee.

Rewriting this in logic:

\(P(x) \) is \(x \) likes chocolate.
Q(x) is \(x \) likes coffee.

Notation: A sentence like \(P(x) \),

is an open sentence with variable \(x \).

The above becomes:

\[\forall x \in \{ \text{people I know} \} \quad P(x) \lor \neg Q(x) \]

for all in the set of people I know.

or: In the universe (of discourse)
Everyone I know who likes chocolate also likes coffee.

\[(\forall x) \, P(x) \lor \sim Q(x) \]

\[\equiv \]

For everyone I know if they like chocolate then they also like coffee.

\[(\forall x \in \{ \text{people I know} \}) \, P(x) \Rightarrow Q(x) \]
Compare \((\forall x \in \text{appl} \ I \text{know} \ with \ P(x) \ true)\)

(equivalent)

\((Q(x))\).

Thm 1.3.1: If \(P(x)\) is an open sentence then in any universe

① \(\sim (\forall x) P(x)\) is eq to \((\exists x) \sim P(x)\)

② \(\sim (\exists x) P(x)\) is eq to \((\forall x) \sim P(x)\)
Check example:
\[\neg \left(\forall x \in \{ \text{ppl I know}\} \left(P(x) \lor \neg Q(x) \right) \right) \]
\[\left(\exists x \in \{ \ldots \} \right) \neg \left(P(x) \lor \neg Q(x) \right) \]
\[\left(\forall x \in \{ \ldots \} \right) \left(\neg P(x) \land Q(x) \right) \]

Def: The truth set in a universe \(U \) for an open sentence \(P(x) \), is all \(x \) in \(U \) for which \(P(x) \) is true.
Proofs:
see §1.7 pgs 64, 65, 66, 67

Examples:

Def: An integer $a \in \mathbb{Z}$ is even if there is an integer n with $a = 2n$.

$$(\exists n \in \mathbb{Z}) (a = 2n)$$
An integer \(a \in \mathbb{Z} \) is odd if \((\exists n \in \mathbb{Z})(a = 2n+1)\)

Thm: If \(x \) is a real number with \(x^2 \leq 1 \) then \(x^2 - 7x > -10 \)

Proof: Assume \(x \) is a real number with \(x^2 \leq 1 \).

Hence \(x \leq |x| = \sqrt{x^2} \leq \sqrt{1} = 1 < 2 \).
Hence \(x < 5 \).

Hence \((x-2) < 0 \) and \((x-5) < 0 \).

Hence \((x-2)(x-5) \leq 0\).

Hence \(x^2 - 7x + 10 > 0 \).

Therefore \(x^2 - 7x > -10 \). \(\text{q.e.d.} \)
Approach:

\[(x-2)(x-3) = x^2 - 5x + 6 > 0\]

- \(x > 3\) (both positive)
- \(x < 2\) (both negative)

\(x < 1\)
Proofs to grade: (bad example)

Thm: If \(a \) is an odd integer then \(a^2+1 \) is an even integer.

"Proof": Let \(a \).

1. Then by squaring an odd we get an odd.
2. An odd plus an odd is even. So \(a^2+1 \) is even.
Problems: ① Why is this true? ② This is not a sentence. ③ It also not clear.
Recall: §1.7 64-67 should be reread.

From pg 67:
To start working out a proof consider:
Understand the statement
Logical form
Assumptions and Conclusion
Ideas
Step 3: Understand.

Try an example: eg $a=3$ and $b=6$ and $c=q$.

The claim is that 3 divides $6q - 3$.

Logic: $P \land Q \Rightarrow R$

- P is a divisor of 6
- Q is a divisor of c
- R is a divisor of $6q - 3$

with quantifiers:

$(\forall a, b, c \in \mathbb{Z}) \left((\forall c \in \mathbb{Z})(\forall a \in \mathbb{Z})(\forall b \in \mathbb{Z})(a, b, c \in \mathbb{Z}) \right)$
Ass & Concl:

Ass: P, Q

\[a \text{ div } b \text{ or } (\exists n) \ n \cdot a = b \]
\[a \text{ div } c \text{ or } (\exists m) \ m \cdot a = c \]

Concl: R

\[a \text{ div } b - c \]

Ideas: With a, b, c as above have

\[b - c = n \cdot a - m \cdot a = (n - m) \cdot a \]

thus is an integer.
Contra position proof:

Claim: If m^2 is an odd integer, then m is an odd integer.

Proof: Assume m is an integer.
 Assume m is even.
 Hence $\exists t \in \mathbb{Z}$ with $2 \cdot t = m$.
 Hence $2t^2$ is also an integer.
 Hence $m^2 = (2t)^2 = 4t^2 = 2(2t^2)$.
 Hence m^2 is even.
Therefore if m^2 is odd then m is odd. QED.

Example with cases and proof by contradiction:

Idea of proof by contradiction:
To prove P, assume $\neg P$ and show Q and $\neg Q$.
U: understand

eg \[a=1\] \[a^2-2=-1\] ✓
\[a=2\] \[a^2-2=2\] ✓
\[a=4\] \[a^2-2=14\] ✓

L: Logic!

Right now: \((\forall a) P\)

Plan: \((\forall a) \sim P \Rightarrow (Q \land \sim Q)\)

(to see these are equivalent:
\[P \lor (Q \land \sim Q) \lor P\]
\[\sim (Q \land \sim Q) \Rightarrow P \]

eq. \[\sim Q \lor Q \Rightarrow P \]

Ass: \(\sim P \)

Concl: \(Q \) and \(\sim Q \)

Ideas: \(\sim P \) is \((4 \text{ divides } a^2 - 2)\)

or \((\exists t)\) with \(4t = a^2 - 2\)

Cases: \(a \) is even
even: \(a = 2s \) so \(4t = (2s)^2 - 2 = 4s^2 - 2 \) so \(2t = 2s^2 - 1 \) or \(1 = 2s^2 - 2t = 2(s^2 - t) \)

Q: \(l \) is even.

\(\neg Q \) is clearly true.

Need to show \(Q \)
210115 Mon. No Lect.
Hw due Wed.

Recall: Claim ①: If a is an integer and a^2 is even then a is even.

Proof: Earlier.

Claim ②: If a is an integer then 4 does not divide $a^2 - 2$.

Proof: Note that 1 is not even.
Assume \(a \) is an integer and \(4 \) divides \(a^2-2 \).

Hence there is an int \(t \) with \(4t = a^2-2 \).

Hence \(a^2 = 2(2t-1) \)

so \(a^2 \) is even

and by claim 0 \(a \) is even.

Hence there is an integer \(s \) with \(a=2s \)

and \(s^2-t \) is an integer.

Hence \(4t = (2s)^2-2 \) so \(1 = 2(s^2-t) \) is even.

Therefore \(1 \) is even and \(1 \) is not even

which is a contradiction. \(\text{qed} \).

A: \(\neg Q \lor p \) is even so \(p = 2s \)

\[\neg R \lor q \] is even so \(q = 2k \)

Concl.: \(\neg P \lor q \) is not the smallest possible denominator.

I: \(a = \frac{p}{q} = \frac{2s}{2k} = \frac{s}{k} \)

and \(k < q \) and hence a smaller denom. so \(\neg P \).
Proof: Assume $a = \frac{p}{q}$ with p and q both even integers.

Hence there are integers s and k with $p = 25$, $q = 2k$ so $a = \frac{p}{q} = \frac{25}{2k} = \frac{5}{k}$.

Therefore q is not the smallest possible denominator.\[\text{ged}\]
\[1^2 + 15 = 16 \]
\[8 \cdot 1 = 8 \]
\[16 \neq 8 \quad \text{oops} \]

maybe noth else

\[L: \left(\exists n \in \mathbb{Z} \right) \left(n^2 + 15 < 8n \right) \]

A: No ass. want

\[\text{Concl.} \quad n^2 + 15 < 8n \]

I:

\[n^2 + 15 - 8n < 0 \]

or \[(n-5)(n-3) < 0 \]
need $n-5 \neq n-3$
to have different signs,
so take $n = 4$
Pythagorean's Thm

Thm: \(\sqrt{2} \) is irrational.

Plan Proof:

\[U: \ \text{try} \ (\frac{7}{5})^2 = 1.96 \]
\[(\frac{10}{7})^2 = 2.040816 \]

\[L: \ \sim P \]

\(P \) is irrational or (contradiction approach)

\(P \Rightarrow (Q \land \sim Q) \)
Ass: \(\sqrt{2} = \frac{p}{q} \)

Concl: \(Q \) and \(\sim Q \).

Still have not had to choose \(Q \).

I: If \(\sqrt{2} = \frac{p}{q} \). \(\boxed{3} \)

Recall: If \(q \) is as small as possible \(\Rightarrow \) \(\sqrt{2} \) is even or \(q \) is odd.

\(p \) is odd or \(q \) is odd.

Compute \(2 = \frac{p^2}{q^2} \) or \(2q^2 = p^2 \). \(\boxed{4} \)

Tidy.

\(p^2 \) is even \(\Rightarrow \) \(p \) is even.

Also should have this means: \(p \) even. \(q \) is odd. \(\boxed{5} \)

Recall.
and $\textcolor{red}{\text{I}} p = 2k$ and $\textcolor{red}{\text{I}} q = 2M+1$ \hspace{1cm} \textcolor{red}{\text{I}}

Proof: Note that b is not even.

Say that if a is rational, $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ with $a = \frac{p}{q}$ and q as small as possible.

Then $a = \frac{p}{q}$ is in **reduced form**.

Recall we proved last time that if $a = \frac{p}{q}$, is a rat. number in reduced form then p or q is odd.

Recall we proved before that if n is an int. and n^2 is even then n is even.

For contradiction assume $\sqrt{2}$ is rational
\[\sqrt{2} = \frac{p}{q} \text{ is in reduced form.} \]

Hence \(2 = \frac{p^2}{q^2} \) so \(2q^2 = p^2 \) so \(p^2 \) is even so \(p \) is even so \(p = 2k \) for some int. \(k \).

Hence \(q \) must be odd so \(q = 2m + 1 \) for some int. \(m \).

Hence \(k^2 - 2m^2 - 2m \) is an integer and
\[
4k^2 = (2k)^2 = p^2 = 2q^2 = 2(2m + 1)^2 = 8m^2 + 8m + 2
\]

Hence \(2[k^2 - 2m^2 - 2m] = 1 \) and \(l \) is even.

Therefore \(l \) is even and \(l \) is not even a contradiction so \(\sqrt{2} \) is irrational.
Recall \(\exists! x \) \((P(x)) \)

is equivalent to:

\[
\exists x \, (P(x)) \land (\forall u, v)[(P(u) \land P(v)) \Rightarrow (u = v)]
\]

find an example.

Ans:

\(\circ \) \(\circ \) \(3 \) has more than 1 \] false
4. \((x-2)^2 = 0\)

5. \(4 \pm \sqrt{-4} \neq \text{not in } \mathbb{R}\)
 \[\frac{4 \pm 2i}{2}\]
 no answers

6. True

7. False

3. Find a different example and done.

4. Example for \(\exists\) more work to do.
Claim: \(\exists \ x \in \mathbb{R} \) \(x^2 - 4x + 4 = 0 \).

Proof: First show \(\exists \ x \in \mathbb{R} \) \(x^2 - 4x + 4 = 0 \) by taking \(x = 2 \) so \(2^2 - 4 \cdot 2 + 4 = 0 \). Check.

Uniqueness: Assume \(u^2 - 4u + 4 = 0 \) and \(v^2 - 4v + 4 = 0 \), hence \((u-2)^2 = 0 \) and \((v-2)^2 = 0 \).

So \(u - 2 = 0 \) and \(v - 2 = 0 \) so \(u = 2 \) and \(v = 2 \) so \(u = v \).
If \(P \) then \(Q \),

\[P \Rightarrow Q \]

By cont. eq.

\[\left[\neg (P \Rightarrow Q) \right] \Rightarrow (R \land \neg R) \]

Possibly can choose \(R = \emptyset \)

eq. \[\left[\neg (\neg P \lor Q) \right] \Rightarrow (R \land \neg R) \]
\[\varphi_1 : (P \land \neg Q) \Rightarrow (R \land \neg R) \]

\[\varphi_2 : (P \land \neg Q) \Rightarrow (Q \land \neg Q) \]

\[\varphi_3 : P \land \neg Q \Rightarrow Q \]

or maybe choose
\[R = P \]

\[(P \land \neg Q) \Rightarrow (P \land \neg P) \]

or
\[P \land \neg Q \Rightarrow \neg P \]

enough to show
\[\neg Q \Rightarrow \neg P \]
210122 §1.8 Number Theory (for proofs).

Next week Set Theory (\(\ldots \)).

Recall: If \(a \) and \(b \) are integers then \(a \) divides \(b \) iff there is an integer \(c \) with \(a \cdot c = b \).

If \(p \) is an integer then \(p \) is prime iff the only positive integers dividing \(p \) are 1 and \(p \).
Def (pg 77): If \(a, b \) and \(d \) are integers nonzero then \(\gcd(a, b) = d \) if

1. \(d \) divides both \(a \) and \(b \) (say \(d \) is a common divisor of \(a \) and \(b \))
2. every common divisor of \(a \) and \(b \) is at most \(d \).

In first order logic:

\[(\forall a, b, d \in \mathbb{Z}_{>0}) [\gcd(a, b) = d] \iff \]
\[\left(\exists s, t \in \mathbb{Z} \right) \left(d \cdot s = a \right) \wedge \left(d \cdot t = b \right) \]
\[\wedge \left(\forall e \in \mathbb{Z} \right) \left[\left(\exists u, v \in \mathbb{Z} \right) \left(e \cdot u = a \right) \wedge \left(e \cdot v = b \right) \right] \Rightarrow \left(e \leq d \right) \]

\text{Brk Rm: Translate lcm def. into logic.}
Claims: \{10, 11, 12\} \rightarrow 3

(∀a ∈ N_{≥ 10}) (∃b ∈ N) (gcd(a, b) = 1) \land (a ≤ b)

(∃a ∈ N_{≥ 10}) (∀b ∈ N) (gcd(a, b) = 1) \lor (a ≤ b)

Proof sketch for a:

Assume \(a \geq 10 \) is an integer.

Choose \(b = a + 1 \).

Note that 1 and \(-1\) are the only divisors of 1.

Assume that \(d \) is a common divisor of \(a \)
and \(b = a + 1 \).

Hence there are integers \(s \) and \(t \), with \(d \cdot t = a + 1 \) and \(d \cdot s = a \), so \(d \cdot (t-s) = a + 1 - a = 1 \) so \(d \) is 1 or -1.

Hence \((a, \phi) = 1\). \(\text{qed} \)
More number theory from §1.8. Division and Euclid's Alg.

Def: If a, b, x, y, n are integers and $n = a \cdot x + b \cdot y$ then n is a linear combination of a and b.

Thm 1.8.1 (Prove later by induction) If a and b are nonzero integers, then $\gcd(a, b)$ is equal to the smallest
positive linear comb in. of a and b.

Thm 2.5.1 (Division Alg).
If a and b are nonzero integers, there is a unique pair of integers q and r with
\[b = a \cdot q + r \]
and \(0 \leq r < |a| \).
Notation for Euclid's Alg:

\[b = a \cdot q_0 + r_1 \]
\[a = r_1 \cdot q_2 + r_2 \]
\[r_1 = r_2 \cdot q_3 + r_3 \]
\[\vdots \]
\[r_{k-2} = r_{k-1} \cdot q_k + r_k \]
\[r_{k-1} = r_k \cdot q_{k+1} \]
Thm: 1.8.2: If $b > a > 0$ are integers then \(\gcd(a, b) = r_k \) from Euclid's algorithm.

Birk. Rm: Apply Euclid's Alg to

\[b = 256 \geq a = 81 > 0 \]

Find \(r_k = 1 \) and \(k \), and the \(q_i \)’s.

\[k = 3 \quad q_1 = 13 \quad q_2 = 3 \quad q_3 = 1 \]
Claim: (1.8.3):
If a, b and p are integers with p prime and p divides ab then p divides a or p divides b.

Proof: Assume a, b and p are integers with p prime, p dividing ab but not a.
Hence there only pos. divisors of p are 1 and p so gcd(p,a) = 1.
Hence by Thm 1.8.1 there are integers x and y with 1 = x·p + y·a.
Also there is an int. \(n \) with
\[ab = np \]
and
\[b = b \cdot x \cdot p + y \cdot a \cdot b \]
so
\[b = b \cdot x \cdot P + y \cdot n \cdot p \]
and
\[b \cdot x + y \cdot n \cdot p \]
\[= [b \cdot x + y \cdot n] \cdot p \]
and
\[b \cdot x + y \cdot n \]
is an integer.

Therefore \(p \) divides \(b \).

\[q.e.d. \]

Set Notation examples:

\[\{3, 4, 5, 6\} = \{x \in \mathbb{Z} | x \geq 3, \; x \leq 6\} = \{\ldots : \} \]
Write $3 \in \{3,4,5,6\}$ is an element of.

$2 \notin \{3,4,5,6\}$ is not an element.

$\{3,4\} \subseteq \{3,4,5,6\}$ is a subset of.

$\{3\} \not\subseteq \{3,4,5,6\}$
\[3 \notin \{3, 4, 5, 6\} \]
\[\{3\} \in \{\{3\}, \{1, 5, 6\}\} \text{ has 2 elts} \]

Power sets:
\[P(\{2, 3\}) = \{\{\}, \{2\}, \{3\}, \{2, 3\}\} \]

The set of subsets. \[\emptyset = \text{the empty set} \]

Which are true:
\[\exists \ A, B, C \text{ sets with} \]
① True: \(A \leq B, \ B \neq C, \ A \leq C \)

② True: \(A \leq B, \ B \subseteq C, \ c \subseteq A \)

③ False: \(A \neq B, \ B \subseteq C, \ c \subseteq A \)

④ False
Set operations.
Related to operations on predicates.

Notation: If A and B are sets write:

1. $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$
2. $A \cap B = \{x \mid (x \in A) \land (x \in B)\}$
3. $A - B = \{x \mid (x \in A) \land (x \notin B)\}$

If A is a subset of a universe U write:

4. $A^c = U - A$
Example: \(A = [3, 8) \subseteq \mathbb{R} = \mathbb{U} \)
\(B = (6, 10] \subseteq \mathbb{R} \)

Find

1. \(A \cup B \)
2. \(A \cap B \)
3. \(A - B \)
4. \(A^c \)
5. \(A \cap B^c \)

Ans:

1. \([3, 10]\)
2. \((6, 8)\)
3. \([3, 6]\)
4. \((-\infty, 3) \cup [8, \infty)\)
5. this just \(A - B \) which is \([3, 6]\).
Dictionary: If $P(x)$ and $Q(x)$ are open propositions with variable x in U, take

$$A = \text{Truth}(P) = \{ x \in U \mid P(x) \text{ is true} \}$$

$$B = \text{Truth}(Q) = \{ x \in U \mid Q(x) \text{ is true} \}$$

$$\text{Truth}(P \land Q) = A \cap B$$

$$\text{Truth}(P \lor Q) = A \cup B$$

$$\text{Truth}(\sim P) = A^c$$

$$\text{Truth}(P \land \sim Q) = A - B$$
Truth \((P \implies Q) \) = \(A^c \cup B \)

Truth Table: similar to Venn Diagram

\(= (A - B)^c \)