MAT 108

Elem - Adv math, Reading ad writing proofs. Like essay - structure ideas Eng is not precise enough. So use predicate logic And some set theory,

Olysol can bill viscos. 14 DIF F then the sert is a prop. I IF T the not a prop x (D Call the sourdence P? If P is True then P is not a propfils so not TorFJT Pie a prop.7Not so either Tor F_J.F If P is Fase then

Using steps from the 1.1.1. NPAQ 13 mg. ~A ~~B ~ (A^B) by (h) is a b A ~(~ A) **~**(a)

 $\sim P \wedge Q$ is eq to $\sim [(\sim P \wedge Q)]$

210106 Building new props from old: ~Q (~Q) same. QN(PVR) equival Truth tables PQIT~P Pra prQ P⇒Q Q⇒P ТТТТ TTTF T.F.T.F. F.T.T.F. F.F.T.F.F. F T F TTF FTTT F

meaning-

Q(x) is x likes coffee.
Notation: A sentence like P(x).
is an open sentence with variable x
The above becomes:
(
$$\forall x \in \{people \ I \ lenow\}$$
) $P(x) \vee \sim Q(x)$
for all in the set perm I (enow.
of people
I (enow.
or: In the universe (of discourse)

Check example:

$$\mathcal{N}(\forall x \in \{pp| Iknow\})(P(x) \vee Q(x))) \stackrel{e.G.}{b.g.}$$

 $(\exists x \in \{\cdots, \cdots, 3\}) \mathcal{N}(P(x) \vee Q(x))) \stackrel{b.g.}{1\cdot 3\cdot 1}$
 $(\exists x \in \{\cdots, \cdots, 3\}) \mathcal{N}(P(x) \wedge Q(x))) \stackrel{b.g.}{b.g.}$
 $(\exists x \in \cdots, \cdots)(\mathcal{N}P(x) \wedge Q(x))) \stackrel{b.g.}{b.g.}$

An integer
$$q \in \mathbb{Z}$$
 is
odd if $(\exists n \in \mathbb{Z})$ $(q = 2n + 1)$
Thm: If χ is a real number
with $\chi^2 \leq |$ then $\chi^2 - 7\chi > -10$
Proof: Assume χ is a real number with
 $\chi^2 \leq 1$.
Hence $\chi \leq |\chi| = \sqrt{\chi^2} \leq \sqrt{1} = | < 2$.

Hence	x<5.	
Hence	(x-2)<0 and	(7-5)<0
Hen	(x-2)(x-5)20.	
Hence	x2-7x+10×0.	•
There So	$\chi^2 - 7\gamma_3 - 10$.	q. c.d.

Approach:

(x-2)(x-3)

Prooss to grade? (bad example) Thm! If a is an odd integer fren a²+1 is an even integer. "Proos"; Leta. 2 Then by squaring an odd. we get an odd. BE An odd plus an odd is even. So a²+1 ois even.

Problems: D why is this true? @ This is not a sendence. sharel be Let a be an odd indeg. 3 is also not clear.

Ass & (oncl!
Ass:
$$P, Q$$

a div b or $(\exists n)$ $n \cdot a = b$
a div c or $(\exists m)$ $m \cdot a = c$
 $Concl$! R
a div b - c
I deas! W if the a,b, c as above
have $b - c = n \cdot a - m \cdot a = (n - m) \cdot a$
This is an integer.

U: under stond. a'-2 =-1 V cg a=1 a²-2 = 2 / 922 A5²-2 = 14 ✓ a=4 L' Logic! Righ now: (Va) P Plan: (Va) ~P=> (Q ~~Q) (to see these are equivalent; PV(QANQ) or

(a) a is odd

$$even: a = 2s$$
 so $4t = (2s)^{2} - 2 = 4s^{2} - 2$
 $so = 2t = 2s^{2} - 1$
 $or = 2s^{2} - 2t = 2(s^{2} - t)$
 $Q: | is even.$
 $vQ = 1s$ clearly frue.
 $Need$ to show Q

210115 Mon. No Lect. Hw due Wed. Recalli Claim D: If a is an integer and a² is even tren a is even. PS: Earlier, Chaim D! If a is an integer then 4 does not divide a²-2. Proof: Note that 1 is not even.

Assume a is an integer and 4 divides
$$a^2-2$$

Hence there is an int t with $4t = a^2-2$.
Hence $a^2 = 2(2t-1)$ so $2t-1$
so a^2 is even is an integer.
And by Claim Ø a is even.
Hence there is an integer.
Hence $4t = (2s)^2 - z$ so $1 = 2(s^2-t)$ is even.
Hence $4t = (2s)^2 - z$ so $1 = 2(s^2-t)$ is even.
Hence $4t = (2s)^2 - z$ so $1 = 2(s^2-t)$ is even.
Hence $4t = (2s)^2 - z$ so $1 = 2(s^2-t)$ is even.
Hence $4t = (2s)^2 - z$ so $1 = 2(s^2-t)$ is even.

A: nQ or pris even so P=25 ~R or qris even av q=2:kD Concl: ~P or g is not the smallet possible denominator. $T: \quad \mathbf{A} = \frac{\mathbf{P}}{\mathbf{q}} = \frac{2s}{\mathbf{z}\mathbf{k}} = \frac{s}{\mathbf{k}}$ and k < g and honce a swilling clenom. so ~ P.

Proof: Assume
$$a = \frac{2}{5}$$
 with
P and q both even integers.
Hence two as integers s and k with
 $p=25$, $q=2k$ so $a = \frac{p}{q} = \frac{25}{2k} = \frac{5}{k}$
There free q is not the smallest possible
lenominate gred-

U! eq
$$|^{2}+|_{5} = |_{6}$$

 $8 \cdot | = 8 \quad |_{6} \notin 8 \quad oqps,$
muybo sach etem
L! $(\exists n \in \mathbb{Z}) \quad (n^{2}+|_{5} < 8n),$
A! No ass. work
Concl!. $n^{2}+|_{5} < 8n$
 $T! \quad n^{2}+|_{5} < 8n$
 $T! \quad n^{2}+|_{5} - 8n < 0$
or $(n-5)(n-3) < 0$

210120) Pythagorean's Thm
Thm!
$$\sqrt{2}$$
 is irrational.
Plan Proo8;
U: try $(\frac{7}{5})^2 = 1.96$
 $(\frac{10}{7})^2 = 2.040816$ ---
L: $\sim P$
P is $\sqrt{2}$ is rational
or (contruduction approach)
 $P = (Q \land \sim Q)$

Ass:
$$CP$$
 $VZ = \frac{P}{g}$
 $Cencl$: Q and vQ .
 $I : If VZ' = \frac{2}{g}$.
 $Recall: If g is as shall as possible flavor
 $P is odd ar q is odd$.
 $Comput 2 = \frac{2}{gz} or 2gz = P^2$.
 $So P^2$ is even also should before this flavor
 $Neans: Peven$.
 Q is add$

and
$$\sqrt{2} = \frac{p}{q}$$
 is in reduced form.
Hence $2 = \frac{p^2}{q^2}$ so $2q^2 = p^2$ so p^2 is even so p
is even so $p = 2k$ for some into k .
Hence q must be odd so $q = 2m + 1$
for some into m .
Hence $k^2 - 2m^2 - 2m$ is an integer and
 $4k^2 = (2k)^2 = p^2 = 2q^2 = 2(2m + 1)^2 = 8m^2 + 8m + 2$
Hence $2[k^2 - 2m^2 - 2m] = 1$ and 1 is even.
Mence 1 is even and 1 is not even a contradiculuant
so $\sqrt{2}$ is irrational.
 q

Recall $(\exists ! x)(P(x))$ $(F_{x}) (P_{x}) \wedge (F_{u,v}) (P_{u,v}) = \gamma (u_{v})$ find an example.

Ans: 3 has more that 1] false (A)

Claim: (I!
$$x \in \mathbb{R}$$
) $x^2 \cdot 4x + 4 = 0$.
Proof: First show (I $x = 2$ So $2^2 - 4 \cdot 2 + 4 = 0$
by taking $x = 2$ So $2^2 - 4 \cdot 2 + 4 = 0$
Unique ness: Assume $u^2 - 4u + 4 = 0$
and $v^2 - 4v + 4 = 0$,
Hence $(u-2)^2 = 0$ and $(v-2)^2 = 0$
So $u-2 = 0$ and $v-2 = 0$
So $u-2 = 0$ and $v-2 = 0$
So $u-2 = 0$ and $v-2 = 0$

b---^

If P then Q, 🕐 म P=PQ By cont? eq. $\left[\left[\left(P = \right) Q \right] \right] = \left(R \wedge n R \right)$ (Fossubly can choose R=Q > eq: [~ (~PVQ)] => (R1~R)

 $q: (P \land \neg q) \Rightarrow (R \land \neg R)$ > or may be choose (Pn~Q) => (Pn~P) PANQ => ~P enough te shar ~Q => ~P

210122 \$1.8 Number the ory (for proofs). Next week Set Theory (~ ~), Recall: If a and b are integers then a divides b if f there is an integration with $a \cdot c = 6$. If p is an integer ten p is prive. iff the enly positive integers dividing p are I and p.

 $[(\exists s, t \in \mathbb{Z}) (d \cdot s = a) \land (d \cdot t = b)]$ $\wedge \left[\left(\forall e \in \mathbb{Z} \right) \left[(\exists u, v \in \mathbb{Z}) (e \cdot u = a) \land (e \leq d) \right] \\ (e \cdot v = b \end{bmatrix} \Rightarrow (e \leq d)$ e is a common d is a common div, div of a tb Translate la def. into logric. Brk Rm:

Claims:
$$[10,11,12,--3]$$

(Ya $\in IN_{\geq 10}$)($\exists b \in N$) ($g.d(ab)=1$) $\land (a \leq b)$
(Ja $\in N \geq 10$)($\forall b \in N$) ($g.d(ab)=1$) \lor ($a \leq b$)
($a \leq b \in N \geq 10$)($\forall b \in N$) ($g.d(ab)=1$) \lor ($a \leq b$)
($a \leq b \in N \geq 10$) ($\forall b \in N$) ($g.d(ab)=1$) \lor ($a \leq b$)
($a \leq b \in N \geq 10$) ($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 10$) ($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \in N \geq 1$)
($a \leq b \geq 1$)
($a \geq b \geq$

and
$$b=a+1$$
.
Hence there are integers s and t.
with $d \cdot t = a+1$ and $d \cdot s = a$
so $d \cdot (t-s) = a+1-a = 1$
so d is 1 or -1 .
Hence $(a, b) = 1$.
ged r

positive linear combin. of a and b.
Then 2.5.1 (Division Alg).
If a and b are nonzero integers.
Here is a unique pair of integers

$$g$$
 and r with
 $b = a \cdot g + r$
and $O \le r < |a|$.

Notation for Euclid's Alg: , + ($h = \alpha$ ſz a - $\Gamma_1 = \Gamma_2 \cdot \beta_3$ rk-2 = rk-1 Ok + | k rr · Ga+)

Thm:
$$[.8, 2]$$
; If $b^{3}a^{70}$ are
integers then $gcd(a,b) = r_{k}$
from Euclid's absorbin.
Brk. Rm!, Apply Euclid's Alg to
 $b=256 \ge a = 81>0$
Find $r_{k} = 1$ and k , and the g_{1}^{15} .
 $k = 3$ $g_{1}^{1} = 1$ g_{2}^{15} .

$$= \{x \mid x \in \mathbb{Z}, 3 \le x \le 6\}$$

has 4 elements.
Write 3 $\in \{3, 4, 5, 6\}$
 $2 \notin [3, 4] \le \{3, 4, 5, 6\}$
 $\{3, 4\} \le \{3, 4, 5, 6\}$

$$3 \notin \{3,4,5,6\}$$

$$\{3\} \in \{3,4,5,6\}$$
has 2 elts
$$Power sets;$$

$$P(\{2,3\}) = \{1,5,6\}$$

$$P(\{2,3\}) =$$

OBFA, BSC, A\$C and CEA subset but proper not equited subset. ASC DTASB, B\$\$, CSA Drue AB, BGC, BFalse FB, BFC CÇA , ACC B\$c ABEA,

210129) Set operations. Related to operations on predivertes. Notation: If A and B are sets write O A $OB = [x | (x \in A) \vee (x \in B)]$ union O A $OB = [x | (x \in A) \wedge (x \in B)]$ interaction O A $OB = [x | (x \in A) \wedge (x \in B)]$ difference O A $OB = [x | (x \in A) \wedge (x \notin B)]$ difference O A $OB = [x | (x \in A) \wedge (x \notin B)]$

$$= \{x \in U \mid x \notin A\}$$

$$= \{x \in U \mid x \notin A\}$$

$$E \times a = [3, 8] \subseteq \mathbb{R} = U$$

$$B = (6, 10] \subseteq \mathbb{R}$$

$$F = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B$$

$$\Rightarrow A \cap B$$

$$\Rightarrow A \cap B$$

$$\Rightarrow A \cap B$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow A \cap B^{c}$$

$$\Rightarrow B = (6, 10] \subseteq \mathbb{R}$$

$$\Rightarrow B =$$

Truth (P⇒Q) AUB B = (A-B)² Venn Daiagra

Truth Table

simily.

for the other. $(\forall A, B, G, D)$ sets) $(A \times B) \cup (c \times D) \leq (A \cup G \times B)$ 2 . 1(The first is true A×B U: 0 × ح $(A \cup C) \times (B \cup D)$ For a counterexample to

 $\Delta = \{a, b, c\}] indexing set,$ $B = \{[x, x+3] \mid o \le x < 2\}$ $= \{B_{\alpha} \mid d \in \Delta\}$ $if B_{a} = [a_{1}a+3]$ and $\Delta = [0, 2]$ indexing set

Ex (1)

(2)

 $\bigwedge_{A \in Q} A = \bigwedge_{A \in \{e, b, c\}} \{3\}$

 $\bigcap_{B \in B} B_{z} \cap B_{z} = [2,3]$

210203 Last proof technique: Induction Example: For every $n \in M = \{1, 2, 3, \dots, 3\}$ it is true that $n^2 = [+3+5+\dots+(2n-1)]$ Claim: Proof: Check the base case of n=1 which is 1²=1 which is true, Assume for induction that

$$n^{2} = [+3+5+ \cdots + (2n-1)]$$
Hence $(n+1)^{2} = n^{2} + 2n+1$

$$= [[+3+\cdots + (2n-1)] + [2n+1]]$$

$$= [+3-\cdots - - - + [2(n+1)-1].$$
There for a by PMIe the claim holds.
$$principle d p pMIe the claim holds.$$

Show
$$P(n+1) \rfloor$$
 step,
I: base case $n=1$ see above
ind-step:
Assum: $n+3 < 5n^2$
Check! $(n+1)+3 = [n+3]+1 < 5n^2+1$
 $5n^2+1 < 5n^2+1on+5 = 5(n+1)^2$
Generalized Print of Math, Ind:

2102-5 Miderm next Wednesday
On web is an old example
Covers ChI & ChZ (except 26),
More induction proofs;
Def: (Fibonacci numbers).
Inductive definition:

$$f_1 = 1$$
, $f_2 = 1$ and $f_{n+2} = f_{n+1} + f_n$
if $n > 0$.
 $F_x: f_3 = 2$, $f_4 = 3$, $f_5 = 5$, $f_6 = 8$, $f_7 = 13$

Hence
$$f_{4(n+1)} = f_{4n+3} + f_{4n+2}$$

 $= f_{4n+1} + 2f_{4n+2}$
 $= 3f_{4n+1} + 2f_{4n}$
which is divisible by 3 since f_{4n} is.
There fore by PMI- the claim holds.
 $f_{4n} = 3 \cdot s$ so
 $f_{4n} = 3 \cdot s$ so
 $f_{4(n+1)} = 3 \cdot f_{4n+1} + 2 \cdot 3 \cdot s = 3 [f_{4n+1} + 2s]$

GInd' Assume Uken have PCK). Prone P(n+1)

Proof Sketch: (\mathbf{A}) Und; UAL JODA Logic: (a EUdor Ad) => (a EU Ad). Assect: Assur a c U Az or (Jaer) (qeAd). L to E to U to to A a

Proof sketch'.

n = 13 e_{α} m= 5, Und! 13-2.5+3 Logic! Want I! which requires TIF.q with ---

3 any 2 solus are the same (!)

50
$$0 = \tilde{r} - r = (q - \tilde{q}) \cdot m$$

50 $0 = q - \tilde{q} \cdot 30 q = \tilde{q} \cdot$

eg: 2Ry and 2RX Digraph associated to R (venn diag) $\frac{2 \cdot 2 \cdot 2}{3 \cdot 3 \cdot 3} \cdot \frac{2 \cdot 2 \cdot 2}{3 \cdot 3 \cdot 3} \cdot \frac{2 \cdot 2 \cdot 2 \cdot 2}{3 \cdot 3} \cdot \frac{2 \cdot 2 \cdot 2}$ 4. ARBSC

 e_{g} : $D_{om}(R) = [1, 2, 4]$ Rng (R) = {y, 2} $E_{X_{1}} I_{\{1,2,3,4\}} = \{(1,1),(2,2),(3,3),(4,4)\}$ digraph: 30-> 1 digraph: 30-> 3 4 2-> 4 $(R'' = \{(y, 1), (y, 2), (Z, H)\}$

Ex: Ras above end Sa reln. from B to C= Ea, b, c 3. eg $S = \{(x, a), (y, a), (z, c)\}$ then $S = \{(x, a), (y, a), (z, c)\}$ Claim! If A and B are sets and Ris a relation from A to B tren IROR = R. Here IB is the identify relation on B.

210217 Equivalence Relations.
Recall: A relation from A to B
is a subset
$$R \in A \times B$$
.
Example: $IA = E(\gamma_1 \times 1 | \times cA)$
 E_{X} : $R = E(1,1), (1,2), (2,2)$
for a relation
on $E_{1,2}$?

2 Ζ

sume relnR

Ex: Relations on
$$\mathbb{R} = real numbers.$$

 $T = \{(x,y) \mid x^2 = y\}$ by $\int_{Y} \frac{1}{y} = \frac{1}{y} \int_{Y} \frac{1}{y} \int_{Y}$

 $\mathcal{L} = \{(x,y) \mid x \leq y\}$

 $\bigvee = \left\{ (x,y) \right\} \times = y \text{ or } x = -y \right\}$

Shetch' $R = \{x,y\} \mid xRy\}$ Legic: $R^{-1} = \{(x,y) \mid gRx^{3},$ Dom(R-1) and Rng(R) Sets so <u>Gare</u> <u>2</u>. هد try together:

 $\mathcal{D} \operatorname{Rng}(R) = \{ \{ \{ \} \} \} (\{ \{ \} \} \} \times \{ \} \}$ $= \{ \{ \} \} (\{ \} \} \times \{ \} \} \times \{ \} \}$ $\mathcal{D}_{om}(R^{-1}) = \{y | (\exists x \in A) \ y \ R^{-1} x \}$

Properties of some relations; Des: If R is a relation on a set A. O Ris reflexive if (VxEA) xRx ② Ris symmetric if (UzigeA) xRy⇒yRx if (Ux,y,zeA) 3 Ris transitie (x Rg) ~ (y Rz) => x Kz E R is an <u>equivalence</u> relation if it is reflexive, symmetric and transitive,

Examples: 2 Ð R = (equiv) S = (not equiv) $(\setminus$ $A_R = \{\xi_1\},$

on A={1,23} a relation

د ا

 $A_{S} = \{ \{2\}, \{2\}, 3\} \}$ $V = \{(x,y) \in \mathbb{Z}^2 | x^2 = y^2\}$ a relation \mathbb{Z} -3 -2 - 1 0 1 3 0 0 0 0 0 0 $\mathbb{Z}_{i} = \{0, 0, 1, -1, 2, 2, -2\}, \dots$ $= \sum \{n_1 - n_3 \mid n \in \mathbb{Z}\}$

$$= \{ \{0\} \} \cup \{ \{1, -n\} \} \cap \{1, n\} \}$$

$$U = \{ (x, y) \in \mathbb{Z}^2 \} = \{ \{1\} \} \cup \{1\} \}$$

$$= \{ \{1\} \} \cup \{2\} = \{ \{1\} \} \cup \{2\} \} \cup \{2\} = \{ \{1\} \} \cup \{2\} \} \cup \{2\} \} \cup \{2\} = \{ \{1\} \} \cup \{2\} \} \cup \{2\} \} \cup \{2\} = \{ \{1\} \} \cup \{2\} \} \cup \{2\} \} \cup \{2\} = \{ \{1\} \} \cup \{2\} \} \cup \{2\} \} \cup \{2\} = \{ \{1\} \} \cup \{2\} \} \cup \{2\} \} \cup \{2\} = \{ \{2\} \} \cup \{2\} \} \cup \{2\} \} \cup \{2\} \} \cup \{2\} \cup \{2\} \} \cup \{2\} \} \cup \{2\} \cup \{2\} \cup \{2\} \} \cup \{2\} \cup \{2\} \cup \{2\} \} \cup \{2\} \cup$$

٩,

Proof sketch: Uni. See abore examples, See above examples Else (R is eq.) => (A/R a put). (Prest, Psin, Phas) => (Q, Q, Q3) Q, Qi, Qi, Qiii Q: Qii , Qiii Logic: Its (Ris eq.) => I: Q: \$\$ \$ A/R. if $\overline{x} \in A/R$ then: need $\overline{x} \neq \phi$. but xRx since R = 8I. so $x \in \overline{x} \neq \phi$.

Quit If $x \in A$ then $x \in U$ is since $x \in \overline{x}$ $\overline{y} \in \overline{F}$ Quit : $\overline{y} \in A$ have $(\overline{x} = \overline{y}) \vee (\overline{x} = \overline{y})$ $(\overline{x} \cap \overline{y} = \overline{p})$ $e_{guiv}: (\overline{x} \wedge \overline{y} \neq \phi) \Longrightarrow (\overline{x} = \overline{y})$

Assume
$$z \in \overline{x} n \overline{y}$$

show $\overline{x} \leq \overline{g}$ (also need $\overline{x} \geq \overline{y}$).
so assame $u \in \overline{x}$ and show $u \in \overline{y}$.
so assame $u \in \overline{x}$ and show $u \in \overline{y}$.
So assame $u \in \overline{x}$ and show $u \in \overline{y}$.
So assame $u \in \overline{x}$ and show $u \in \overline{y}$.
So assame $u \in \overline{x}$ and show $u \in \overline{y}$.
 $x \in \overline{x}_1 \geq e \overline{y}_1 \quad u \in \overline{x}$ dived show $u \in \overline{y}$.
 $u \in \overline{x}$ dived show $u \in \overline{y}$.
 $u \in \overline{x}$ dived show $u \in \overline{y}$.
 $u \in \overline{x}$ dived show $u \in \overline{y}$.
 $u \in \overline{x}$ dived show $u \in \overline{y}$.
 $u \in \overline{x}$ dived show $u \in \overline{y}$.
 $u \in \overline{x}$ dived show $u \in \overline{y}$.

so by trans have y Rx and y Ru
so dore and
$$\overline{x} \leq \overline{y}$$
.

210227 Next § 3,4: Modular Arrithmetric,
Proofs of Thm 3.3.1
Assume R is an equivalence relation
on a nonempty set A.
If xeA then
$$\overline{x} \in A/R$$
 and since R
is reflexive have πRx so $\pi \in \overline{x}$.
Hence if $x \in A$ then $x \in \overline{x} \in \bigcup_{\overline{y} \in A/R} hence$
 $\bigcup_{\overline{y} \in A/R} \emptyset = A$.
Also if $\overline{x} \in P/R$ then $\pi \in \overline{x}$ so $\overline{x} \neq \emptyset$.

If ZEYNX and WEX
then YRZ, XRZ and XRW
so by symmetry ZRX and using transitivity
twice have yRX and yRW
so wey. Therefore
$$\overline{X} = \overline{y}$$
.
Similarly $\overline{y} \leq \overline{x}$ so $\overline{y} = \overline{X}$. great,

Examples: In ZZ; Find: or find the remainder after cliv by 7 of: (a) $3+5 = \overline{8} = \overline{1}$ Ansi (b) 63.5=15=1 $\bigcirc 5^3 = (-2)^3 = -9 = -1 = -6 \bigcirc$

$ (f) 215^{698} = 5^{698} = (-2)^{698} = (-$	-2) -2)
$(\overline{-z})^2 = \overline{4} \qquad \qquad$	5. (-2)2 = 4
$(-2)^3 = -8 = -1$	(4)
$(\overline{z})^{\circ} = (\overline{z}) \cdot (\overline{z}) = \overline{z}$	•
Try tre same Q, Q, E in	Zq
Ans: (1) $\overline{8} + \overline{5} = 13 = \overline{4}$	Ð
Ans: (1) $\overline{8}+\overline{6} = \overline{13} = \overline{4}$ (2) $\overline{-1}\cdot\overline{6} = \overline{-6} = \overline{4}$	TE
$(f) (-1)^{697} = \overline{1}$	Ō

Shetch: Examples above:
$$m=7$$

 $g=1 \pmod{7}$
 $-2=5 \pmod{7}$
 $6=6 \pmod{7}$.
Logic: $P \land Q \Longrightarrow R$.
Assume P, Q show R_{-}
 $Q = C$ is div. by M .
or flere is $h with mh = a-c$

and
$$m l = b - d$$

so $mk + ml = (a - c) + lb - d)$
 $= (a + b) - (c + d)$

line in exactly one point.
Proof: Assyme
$$x \in \mathbb{R}$$
, Hence $y = x^{2} - 4 \in \mathbb{R}$.
and $f(x) = y$ so domain(f) = \mathbb{R} .
Assume $f(x) = y$ and $f(x) = 3$.
Hence $y = x^{2} - 4 = 2$. ged.
(Clearing: The inverse to D is not a function.
 $g = \{(y,x) \in \mathbb{R}^{2} \mid y = x^{2} - 4\}.$

Sketch: either show
$$(-12, 4)$$
 has no
solves so $-12 \notin Dom(g)$.
or show twe are two solves.
 $(0, 2) \& (0, -2),$
 $looks easilier,$
Proof: $(0, 2)$ and $(0, -2)$ are both in g.
(since $0=2^2-4$ and $02(-2)^2-4$) exced.

Claim: If f is a function from A to A and f is an equivalence relation on A ten f=IA. Proof: Assume A is a set. fis a function from A to A and f is an equivalence relation. If a & A two since fis reflexive (a,a) & f so IA & f. b # c (b,c) ef with It

then
$$(b,b) \in f$$
 also so
by property (i) of functions.
 $c=b$ a contradiction
hence $f \in IA$.

 $\overline{Z} = \sum_{i=1}^{n} \overline{Z} =$

 \mathbb{Z}_{6} Σχ٦ ह(त्र [0] = [0] いて 07 2 [3]

 $g = \{(\overline{x}, [x]) \mid x \in \mathbb{Z}\}$

210226 $\overline{\chi} \in \mathbb{Z}_3 = \{\overline{o}_1, \overline{1}, \overline{2}\}$ Write $[\pi] \in \mathbb{Z}_{6} = \{ [0], [1], [2], [3], [4], [4], [5] \}$ ٤٥) - - -Claim: The relation $f(\overline{x}) = [\overline{x}]$ is not a well defined function from \overline{z}_3 to \overline{z}_6 .

and
$$[k] = [l]$$
 then there is E with
 $k-l = 6t = 3 \cdot 2t$
so $\overline{k} = \overline{l}$. great.

If g is a functur from BtoC avoi f " A toB $g \circ f = [(a, c)](\exists b \in B) with$ f(a) = b and g(b) = c]then

210301) More conditions on Sunctions. Sketch: U: gof = {(a,c) \in A × C [= B] $[(a,b) \in f] \land [(b,c) \in q]]$ $f(a) \geq b$ $g(b) \geq c$ $g(b) \geq c$ $f(a) \geq b$ $f(a) \geq b$ $g(b) \geq c$ $f(a) \geq b$ $f(a) \geq b$ $f(a) \geq c \in C$ $(a,c) \in g \circ f$ equivalutly, $\int \frac{\partial f}{\partial t} = \frac{\partial f}{\partial t}$

I Try I first:
VacA have
$$f(a) = b \in B$$

and $g(b) = c \in C$.
so $(a, c) \in got$
For ! if $(a, c), (a, \tilde{c})$ are in got.
they I by \tilde{b} with $(a, b), (a, \tilde{c})$ in f
and $(b, c), (\tilde{b}, \tilde{c})$ in g.

Ans:
() Not onto since range
$$(x^2) = R_{30} \neq R$$
.
Not one to one since $(-2)^2 = (2)^2 = 4$.

(2) Not onto since $range(e^{x}) = R_{yo} \neq R$. Is one bone since if $e^{x} = e^{y}$ ten $\left[\begin{array}{c} \ln(e^{x}) = \ln(e^{y}) \\ \begin{array}{c} 11 \\ x \end{array} \begin{array}{c} 11 \\ y \end{array} \begin{array}{c} 11 \\ y \end{array} \right]$ Since e^{x} is increasing if x < y for $e^{x} < e^{y}$ so $e^{x} \neq e^{y}$. Another. Proof. (3) Is onto since $range(x^3) = \mathbb{R}$.

IS one le one since $i \begin{cases} x^{3} = y^{3} \\ y^{3} = y^{3} \\ y^{3} = y^{3} \\ y^{3} = y^{3} \end{cases}$ Def: If f is a function from AtoB which is both one to one and onto call f bijective or a bijection Exi 3 aboue h(x)=x3 is bijective

Srom IR to R. Claim 4.3.2: If g a fn. from B to C and f ... A to B and got is an Onto fn from A to C then g is also onto C. Proof: If c is in C then

$$c = (g \circ f)(a) \quad \text{for size a in } A \quad \text{one get nonly} \\ and \quad \text{if } b = f(a) \quad \text{tren } g(b) = g(f(a)) = c. \\ g.e.d. \\ Claim! \quad If \quad g: B \rightarrow C \quad \text{and} \quad f: A \rightarrow B \\ (and \quad g \circ f: A \rightarrow C \quad \text{is onto.} \\ \text{then } f: A \rightarrow B \quad \text{might not be onto.} \\ \text{then } f: A \rightarrow B \quad \text{might not be onto.} \\ Proof: \quad Consider he \quad example: \\ A = \{i\}, \quad |3 = \{i, 3\}, \quad C = \{i\}, \\ f(i) = 3, \quad g(i) = g(3) = 4 \\ Check: \quad (g \circ f)(i) = 4 \quad \text{so } g \circ f \text{ is onto} \\ \end{array}$$

but
$$f(.1)=3 \neq 2$$

so fis not onto.

and (i) (
$$\forall a \in A$$
) ($\forall b, 5 \in B$) ($(a, b) \in f$)
($(a, 5) \in f$) $\Rightarrow b = \overline{b}$
or equiv: ($\forall a \in A$) ($\exists ! b \in B$) (a, b) $\in f$
(a, b) ($\forall b \in B$) ($\exists a \in A$) ($a, b \in f$)
($a, b \in f$)
($a, b \in f$]
or equivalently: ($\forall b \in B$) ($\exists ! a \in A$) ($a, b \in f$
($a, b \in f$]
or equivalently: ($\forall b \in B$) ($\exists ! a \in A$) ($a, b \in f$

I: If f has
fr:
$$(\forall a) (\exists!b)$$
 (a,b) of
fr: $(\forall b) (\exists!a)$ (a,b) of
big : $(\forall b) (\exists!a)$ (a,b) of
then: f^{-1} has:
big : $since$ f is a fin so
big : $(\forall a) (\exists!b)$ (a,b) of so (b,a) of
 $(\forall a) (\exists!b)$ (a,b) of so (b,a) of
fr: since f is a big so
 $(\forall b) (\exists!a)$ (a,b) of co (b,a) of

Then 4.4.4. a:
If f is a fn. from A to B
and g "
then
$$f=g^{-1}$$
 iff
 $g_{0}f = I_{A}$ and $f_{0}g = I_{B}$
Claim: There are fns: $g_{0}f_{y_{0}}^{(J)}$

Sketch
() Compute:
$$\overline{0} + \frac{f}{(0)^2} = \overline{0}$$

 $\overline{1} + \frac{f}{(1)^2} = \overline{1}$
 $(\overline{a}) + \frac{f}{(\overline{2})^2} = \overline{4}$
 $\overline{3} + \frac{f}{(\overline{3})^2} = \overline{4} = \overline{4} = \overline{4}$
Proof of (2) = $\overline{4} = \overline{4} = \overline{4} = \overline{4}$
so $\overline{4}$ is not one to one.
gen.

2 Compute.

I: (onto): If
$$n \in N$$

then $N = 2^{\alpha} \beta$
with $d \ge 0$ and $\beta \ge 1$ and odd
cog $12 = 2^2 \cdot 3$
so $d + 1 \ge 1$ is in M
and $\frac{\beta + 1}{2}$ is in M
 $n = f(d + 1, \frac{\beta + 1}{2}) = 2^{d + 1 - 1} (2^{\frac{\beta + 1}{2}} - 1)$

a b
$$2^{\alpha}\beta$$

(1-1): If $f(\alpha, b) = f((\tilde{\alpha}, \tilde{b}))$
 $2^{\alpha-1}(zb-1)$ $2^{\tilde{\alpha}-1}(z\tilde{b}-1)$
For contradiction assure $\alpha \neq \tilde{\alpha}$
may assure $\alpha > \tilde{\alpha}$
divide both sides by $2^{\tilde{\alpha}-1}$
 $g_{a}t$ $2^{\alpha-\tilde{\alpha}}(zb-1) = (z\tilde{b}-1)$
so even = odd $+$

Hence
$$a \ge a$$
 $a \ge a$ $fren$
 $a^{a-1}(zb-1) = a^{a-1}(zb-1)$
so $ab-1 = zb-1$
so $b = b$

iff
$$(Thm 4.4.4)$$

 $\exists g: B \Rightarrow A \quad with \quad g = f^{-1}$
 $iff (Cor 4.4.3)$
 $\exists g: B \Rightarrow A \quad with \quad g = f^{-1}$
 $\exists g: B \Rightarrow A \quad with \quad g = f^{-1}$
and $g \quad is \quad a \quad bijectim.$

Ans: (1,0) 51,00) (0,1) (0) 3 $f(\frac{1}{2}) = \frac{1}{2} \left(e(\iota, t) \right)$

$$F(\frac{1}{x}) = \frac{1}{x}$$

$$F(1) = \frac{1}{x}$$

210308 Ch5: Counting and set cordinality: Def: If A and B are sets then A & B or A is equivalent to B if IA => B with fa bijective function Ex: $\{1,2,3\} \approx \{a,b,c\} \neq \{1,2,3\}$ Des: Nk = {1,2,..., k} No = φ Def: If $A \approx N_{k}$ write $\overline{A} = k = \overline{\{a_{i}b_{i}c\}}$

and say A has cardinality k. eg $\overline{\phi} = 0$, $\overline{\{\alpha_1, b, c\}} = 3$ $\begin{aligned} \text{If } A \approx N & \text{write } \overline{A} = , 2 \\ \text{aleph not} \\ (\text{If } A \approx (0,1) & \text{write } \overline{A} = c \end{aligned}$ X) and say A is denumerable or countably infinite. s and say A has the cardinality of the continuum.

If $\overline{A} = k$ or \mathcal{N}_{o} call A countable IF A=k call a finite and otherwise infinide

50
$$\exists f: \mathcal{W}_{n+1} \longrightarrow \mathcal{W}_{r} = injective$$

with $r < n+1$
hence: $f|_{\mathcal{W}_{n}}: \mathcal{N}_{n} \longrightarrow \mathcal{N}_{r} - ixis$
if $x = f(n+1)$ since f is injective.
and $f|_{\mathcal{W}_{n}}$ is injective.
and by $H\mathcal{W} = g: \mathcal{M}_{n} \stackrel{-ixis}{\longrightarrow} \mathcal{M}_{r-1}$
injective.
so $gof|_{\mathcal{W}_{n}}: \mathcal{N}_{n} \longrightarrow \mathcal{M}_{r-1}$ injective.
 $\exists gof|_{\mathcal{W}_{n}}: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{r-1}$ injective.
 $\exists gof|_{\mathcal{W}_{n}}: \mathcal{M}_{n} \longrightarrow \mathcal{M}_{r-1}$ injective.

eg:
$$f(x) = .32154$$

 $f(x) = .5651122$
 $f(x) = .35613...$
 $f(x) = .35613...$
 $f(x) = .35613...$
 $f(x) = .35611111$
 $q = 5.553...$
 $q = .5353...$
 $q = .5353...$

Thur J.Y.J: If A is a set than A # P(A) Proof Sbetch U! for A & finite: if $\overline{A} = n$ then $\overline{PA} = 2^n \neq n$ eq $\vec{p} = 0$ and $\vec{p} = 2^{\circ} = 1 \pm 0$ $\vec{l} = 1$ and $\vec{l} = 2^{\circ} = 1 \pm 0$ Li for any f: A -> P(A) show f is not onto

and so not bijective.
Trick/Iclassi Griven
$$f$$
 bisild.
 $B = \{a \in A \mid a \notin f(a)\}$
eg: $f: \{1,2,3\} \rightarrow P(\{1,2,3\}),$
 $f(i) = \{1,2\}, f(2) = \{3\}, f(3) = \{1,2,3\},$
 $B = \{2,2\},$
Kay: $B \notin Im(f)$

Note: $(0,1) \neq P((0,1)) \neq P(P((0,1)))$ $\neq P(P(P((0,1)))) - -$

210312
First or dur Predicate Logic:
Propositions: Truth Tables inside back

$$\Lambda, V, \sim, \Rightarrow, \iff$$

universe $\exists \forall \exists :$
Sets: Vann Diagrams
 $\Lambda, U, A^{c}, \epsilon, \Lambda, U, X, -,$
in a universe family family.

Relations:
$$R \subseteq A \times B$$

 xRy or $(x,y) \in R$
 R^{-1} , $R \circ S$, $dom(R)$, rang(R)
Equivalence relationsi
 x , GR (set of sets)
eq $Z_n = ZR$ for the right R.
Functions: $\forall x \exists y$ with $(x,y) \in f$ writh $f(x) = y$
bijective functions: $\forall y \exists x$ with $(x,y) \in f$.

Example Problems: Find gcd (182, 21) Ans: Two approaches: O Euclid's Alg: 182 = 8.21 + 14 21 = 1 · 14 + II = ged 14 = 2.7 2 Factor both: 2.7.13=182 3.7 = 21

Problem:
Problem:
Prove that
$$S = \{(x,y) \in \mathbb{R}^2 \mid x - y \in \mathbb{Q}\}$$

relation on \mathbb{R}
is an equivalence relation.
Find $x,y,z \in \mathbb{R}$ with $\overline{x} = \overline{y} \neq \overline{z}$
Show that \overline{T} is denumerable.

(b) $\overline{x} = \{y \mid (x,y) \in S\}$ eq $\overline{x} = \overline{y}$ if x = geg $\overline{O} = \frac{1}{2}$ Proof: $\subseteq if a \in \overline{O}$ then $O - a \in \overline{O}$ so $s_{O}(\frac{1}{2}a) \in S$ so $a \in \frac{1}{2}$, \supseteq similarly, (U,u) E 5 50 12-QEQ

and
$$\overline{O} \neq \overline{\pi}$$

since: $\pi \in \overline{\pi}$ since $(\pi, \pi) \in S$
since S is reflexive
 $(Or \pi - \pi = 0 \in \mathbb{O})$.
but $\pi \notin \overline{O}$ since
for contradiction assure $\pi \in \overline{O}$
 $SO \quad (O_1 \pi) \in S$ $SO \quad O - \pi \in \mathbb{Q}$.
but $-\pi \notin \mathbb{Q}$. a contradiction.
 $g_{\mu} = 0$

