Math 127B (1.5)xPractice Final Spring 2025

You may use one sheet of notes. The final will have only six problems.

- 1. Consider the zigzag function f defined on [-1, 1] with f(0) = 0, for every positive integer n there is $f(\frac{\pm 1}{n}) = \frac{(-1)^n}{n^2}$ and f is linear on the intervals $[\frac{-1}{n}, \frac{-1}{n+1}]$ and $[\frac{1}{n+1}, \frac{1}{n}]$. At which points in (-1, 1) is f differentiable?
- 2. Show that if f is thrice differentiable in (a, b) and a < c < b then

$$f''(c) = \lim_{h \to 0} h^{-2} [f(c-h) - 2f(c) + f(c+h)].$$

- 3. Assume that f is twice differentiable at every point in (0, 4), f(3) = 3, f(1) = 0 and there is some other number $x \in (1, 3)$ with f(x) = 0 also. Show that there is some number $y \in (1, 3)$ with $f''(y) > \frac{3}{4}$.
- 4. Consider the sequence of functions $\{f_n\}$ defined on $[0, \infty)$ with $f_n(x) = \frac{nx}{1+nx}$.
 - (a) Find the pointwise limit of this sequence.(Pay attention to zero.)
 - (b) Determine whether the sequence converges uniformly.
- 5. Consider the two equal parts partition $P = \{0, \frac{1}{2}, 1\}$ of [0, 1]. Show that there is another two part partition Q of [0, 1] so that $U(x^2, Q) - L(x^2; Q) < U(x^2, P) - L(x^2; P)$.
- 6. Assume that f is integrable on [0, 4] and define $F(x) = \int_0^x f$ also on [0, 4]. Show that there is some $c \in [2, 3]$ with $\int_2^3 F = \int_0^c f$.

- 7. Show that if $\int_I f^2 = 0$ then $\int_I f$ exists.
- 8. Show that if f(0) = 0 and $f(x) = P_{\infty,0}(x)$ (its Taylor series) on (-a, a) then so does g(x) with g(0) = f'(0) and $g(x) = x^{-1}f(x)$ otherwise.
- 9. Consider the function $f(x) = \int_0^x \ln(1+t)dt$.
 - (a) Find the Taylor polynomial $P_{2,0}(x)$ for f.
 - (b) Show that if |x| < 1 then $\frac{-x^3}{6} \ge f(x) P_{2,0}(x) \ge \frac{-x^3}{6(x^2 2x + 1)}$.