
Discussion 2 Differentiation June 4, 2025

Problem 1. Consider the zigzag function f defined on [−1, 1] with f(0) = 0. For every
positive integer n, we have:

f

(
± 1

n

)
=

(−1)n

n2
,

and f is linear on the intervals[
− 1

n
,− 1

n+ 1

]
and

[
1

n+ 1
,
1

n

]
.

At which points in (−1, 1) is f differentiable?

Solution. It is clear from the construction of f that f is differentiable on (− 1
n
,− 1

n+1
) and

not differentiable at x = − 1
n
, 1
n
, for n = 1, 2, ... We will show that f ′(0) = 0. Fix ϵ > 0. Let

N be a positive integer such that n+1
n2 < ϵ for all n ≥ N . Next, choose δ > 0 be sufficiently

small such that for all x ∈ (−δ, δ)\{0}, there exists n ≥ N such that x ∈ [− 1
n
,− 1

n+1
] or

x ∈ [ 1
n+1

, 1
n
]. Then we have for all x such that |x| < δ and x ̸= 0,

|f(x)
x

| ≤
1
n2

1
n+1

=
n+ 1

n2
< ϵ.

Problem 2. Show that if f is twice differentiable in (a, b) and a < c < b, then

f ′′(c) = lim
h→0

h−2 [f(c− h)− 2f(c) + f(c+ h)] .

Solution.

Problem 3. Assume that f is twice differentiable at every point in (0, 4), f(3) = 3,
f(1) = 0, and there is some other number x ∈ (1, 3) with f(x) = 0 also. Show that there is
some number y ∈ (1, 3) with f ′′(y) > 3

4
.

Solution. Let x0 ∈ (1, 3) such that f(x0) = 0. By MVT, there exists a ∈ (1, x0) such that

f ′(a) = f(x0)−f(1)
x0−1

= 0. Similarly, there exists b ∈ (x0, 3) such that f ′(b) = f(3)−f(x0)
3−x0

= 3
3−x0

.

Since x0 ∈ (1, 3), f ′(b) > 3
2
. Finally, applying MVT to f ′ on [a, b], there exists c ∈ (a, b) such

that f ′′(c) = f ′(b)−f ′(a)
b−a

= f ′(b)
b−a

>
3
2

2
= 3

4
.

Problem 4. Consider the sequence of functions {fn} defined on [0,∞) with

fn(x) =
nx

1 + nx
.

(a) Find the pointwise limit of this sequence. (Pay attention to zero.)
(b) Determine whether the sequence converges uniformly.

Solution.
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(a) We have fn(0) = 0 for all n, and for x ∈ (0,∞), fn(x) → 1 as n → ∞. Therefore, fn
converge to g pointwise, where

g(x) =

{
0 if x = 0

1 if x > 0.

(b) The convergence is not uniform because for any interger n > 0, f( 1
n
) = 1

2
.

Problem 5. Consider the two equal parts partition P =
{
0, 1

2
, 1
}
of [0, 1]. Show that there

is another two part partition Q of [0, 1] so that

U(x2, Q)− L(x2;Q) < U(x2, P )− L(x2;P ).

Solution. For this problem, you just need to try something. For example, try Q = {0, 2
3
, 1}.

Problem 6. Assume that f is integrable on [0, 4] and define

F (x) =

∫ x

0

f

also on [0, 4].
Show that there is some c ∈ [2, 3] with∫ 3

2

F =

∫ c

0

f.

Solution. The function F (x) =
∫ x

0
f(t)dt is continuous on [0, 4] since f is integrable on

[0, 4]. Therefore, h(x) =
∫ x

0
F (t)dt is integrable on (0, 4), by the Fundamental Theorem

of Calculus. By MVT, there exists c ∈ [2, 3] such that h′(c) = h(3)−h(2)
3−2

=
∫ 3

2
F. Also by

Fundamental Theorem of Calculus, we have h′(c) = F (c) =
∫ c

0
f .

Problem 7. Show that if
∫
I
f 2 = 0 then

∫
I
f exists.

Solution. Since f 2 is integrable, f 2 continuous almost everywhere on I (i.e., the set of
discontinuities of f 2 in I has measure zero). In addition, since

∫
I
f 2 = 0, f 2(x) = 0 for all

x at which f is continuous. This implies that f = 0 almost everywhere on I (i.e., the set of
points of I where f is nonzero has measure zero.) Therefore, f is integrable. To prove this,
fix ϵ > 0 and choose a finite collection of disjoints intervals Ik that cover the set of points
where f is nonzero such that m(

⋃
Ik < ϵ). Refine these intervals to make a partition P for I.

Then we can see without difficulty that U(f, P )− L(f, P ) < Cϵ, where C = 2 supx∈I |f(x)|.
(Note, f is bounded.)

Problem 8. Show that if f(0) = 0 and f(x) = P∞,0(x) (its Taylor series) on (−a, a) then
so does g(x) with g(0) = f ′(0) and g(x) = x−1f(x) otherwise.
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Solution. By assumption, f(0) = 0, and so f(x) =
∑∞

n=1 anx
n, where an = f (n)(0)/n!.

Thus, when x ̸= 0, we have f(x)
x

=
∑∞

n=1 anx
n−1.Define

g̃(x) =

{
f ′(0) if x = 0∑∞

n=1 anx
n−1 if x ̸= 0.

Then g̃(x) = g(x) for all x ∈ (−a, a). Moreover, limx→0

∑∞
n=1 anx

n−1 = f ′(0), thus we can
write g̃(x) =

∑∞
n=0 an+1x

n for all x ∈ (−a, a). Note that g̃ and g has the same radius of
convergence.

Problem 9. hehe

Solution. We have f ′(x) = ln(1 + x), f ′′(x) = 1
1+x

, f ′′′(x) = − 1
(1+x)2

. Thus,

P2,0(x) =
1

2
x2.

We have R2(x) = f(x)−P2,0(x) =
−1

6(1+ξ)2
x3 for some ξ between 0 and x. If x > 0 and x < 1,

then 0 < ξ < x < 1. Thus −x3

6
> R2(x) > −x3

24
. If −1 < x < 0, then −1 < x < ξ < 0, and

so (1 + ξ)2 ∈ ((x+ 1)2, 1). Therefore, − x3

6(1+x)2
< R2(x) < −x3

6
.
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