
Math 127B Practice Midterm I Spring 2025

Solutions

Problem: 1 40 points: Derivative and Straddling

(a) Show that if a function f defined on all real numbers (R) has f ′(0) = 0 then:

[∀(ε > 0) ∃(δε > 0) ∀(x, y ∈ R with − δε < x < 0 < y < δε)]

|f(y)− f(x)| < ε(y − x)

(b) Find an example of a function f defined on R with f ′(0) = 0 for which the following is false:

[∀(ε > 0) ∃(δε > 0) ∀(x, y ∈ R with 0 < x < y < δε)]

|f(y)− f(x)| < ε(y − x)

You need not prove that it is false just give a brief explaination of why this nonstraddling property
fails for your function.

(a) Unwinding the statement that f ′(0) = 0 says, we have that for any ε > 0 you can find a δ > 0
such that for any x ∈ R that satisfies 0 < |x|< δ:∣∣∣∣f(x)− f(0)

x

∣∣∣∣ < ε

Or, after multiplying both sides by |x| to make this look more like what we want to show:

|f(x)− f(0)| < ε|x|

Still with the same ε and δ from the derivative unwinding:

|f(y)− f(x)| = |f(y)− f(0) + f(0)− f(x)|
≤ |f(y)− f(0)|+|f(x)− f(0)|
< ε(|y|+|x|)
< ε(y − x) (***)

In going to the (***) line, we are now supposing −δ < x < 0 < y < δ (ie, negative x and positive
y) so the absolute value bars can be simplified. The ε > 0 was arbitrary and the δ came from the
derivative limit (ie, set δε = δ to match the problem statement).

(b) Rearranging the property we want to find a counterexample for this part:

|f(y)− f(x)|
y − x

< ε

which (in a sense) says that the numerator goes to 0 much faster than the denominator. An idea
for crafting a counterexample is to find a function f that oscillates near 0 and take points x on
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the crests and points y on the troughs. The stereotypical example of such a function differentiable
at 0 is (example 8.10 of Hunter):

f(x) =

{
x2 sin(1/x) x ̸= 0

0 x = 0

By running through the definition of the derivative, it can easily be shown that f ′(0) = 0. Now
take a sequence yn → 0+ along the crests of f , and similarly xn → 0+ along the troughs of f . If
you want to be precise (not needed here), the first crest of sin(x) occurs at x = π/2 and trough
x = 3π/2, so all crests and troughs occur at x = π/2 + 2nπ and x = 3π/2 + 2nπ. So take
yn = 1/(π/2 + 2nπ) and xn = 1/(3π/2 + 2nπ). When this is the case:

|f(yn)− f(xn)|
yn − xn

=
y2n + x2

n

yn − xn

Now x2
n, y

2
n = O(1/n2) and yn − xn = O(1/n2) (each is O(1/n), but forming like denominators to

subtract makes this O(1/n2)) So as n → ∞, we expect this ratio to go to a constant. Doing this
numerically using the following code, I find this constant to be 0.63661985.

program main

use iso_fortran_env, only: dp => real64, terminal => output_unit

implicit none

real(dp), parameter :: pi = 4 * atan(1.0_dp)

real(dp) :: y, x

integer :: n, nmax

nmax = 1000

do n = 1, nmax

y = yn(n)

x = xn(n)

write(terminal, "(f17.8)") abs(f(y) - f(x)) / (y - x)

enddo

contains

real(dp) function yn(n)

integer, intent(in) :: n

yn = 1.0_dp / (pi/2.0_dp + 2.0_dp*n*pi)

endfunction yn

real(dp) function xn(n)

integer, intent(in) :: n

xn = 1.0_dp / (3.0_dp*pi/2.0_dp + 2.0_dp*n*pi)
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endfunction xn

real(dp) function f(x)

real(dp), intent(in) :: x

f = (x**2) * sin(1.0_dp / x)

endfunction f

endprogram main
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Problem: 2. 20 points: MVT and Inflection

Show that if f(x) is a function defined on (0, 4) and

(a) f(x) is twice differentiable,

(b) f(1) = 1,

(c) f(2) = 2 and

(d) f(3) = 3

then there is some c ∈ (0, 4) with f ′′(c) = 0.

The mean value theorem applied to f twice gives numbers a ∈ (1, 2) and b ∈ (2, 3) such that:

f ′(a) =
f(2)− f(1)

2− 1

= 1

f ′(b) =
f(3)− f(2)

3− 2

= 1

Again using the mean value theorem, but on f ′ gives a number c ∈ (a, b) ⊆ (0, 4) such that:

f ′′(c) =
f ′(b)− f ′(a)

b− a

= 0
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Problem: 3. 20 points: Convergence and Derivatives

Find integers a and b so that the sequence of functions{
fn(x) =

sin(nbx)

na

}
defined on all reals satisfies all four of the following:

(a) The sequence is uniformly Cauchy.

(b) The pointwise limit f of the sequence is differentiable.

(c) The limit L = lim
n→∞

f ′
n(0) exists.

(d) f ′(0) ̸= L.

(Note that the sequence {f ′
n(x)} can not converge pointwise.)

A systematic way of doing this problem is to run down each criteria of fn and finding restrictions
on a and b from each one, and choosing a and b to satisfy all of them. I will go top-down, finding
such restrictions.

First uniformly Cauchy. This means that for any ε > 0 there is an N ∈ N such that
when m,n > N (and without loss of generality set m ≥ n) we have that |fm(x)− fn(x)|< ε. This
is certainly satisfied if:

|fm(x)− fn(x)| =
∣∣∣∣sin(mbx)

ma
− sin(nbx)

na

∣∣∣∣
≤ 1

ma
+

1

na

≤ 2

na

< ε

which is satisfied if a > 0.

If we are assuming that a > 0, then the pointwise limit of fn(x) as n → ∞ is 0 (na dom-
inates sin(nbx)), which is differentiable.

Taking a derivative:

f ′
n(x) = nb−a cos(nbx)

And so:

f ′
n(0) = nb−a

In order for this to exist, we need b ≤ a (otherwise it blows up).

Earlier we showed that as long as a > 0, then f(x) = lim
n→∞

fn(x) = 0, so f ′(0) = 0. We
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now want lim
n→∞

f ′
n(0) = nb−a ̸= f ′(0) = 0. Take b = a, nb−a = 1 and these numbers are different.

We have concluded that we get all desired properties when b = a and a > 0. So take
a = 1 and b = 1 for instance.

6



Problem: 4. 20 points Series: Weierstrass

Show that the sequence {
fn(x) =

n∑
t=1

sin(3tx)

6t

}

converges pointwise to a differentiable function.

I will be using the following theorem from Hunter to solve this problem. For reference, I will copy
it here.

Theorem 9.18. Suppose that (fn) is a sequence of differentiable functions fn : (a, b) → R such
that fn → f pointwise and f ′

n → g uniformly for some f, g : (a, b) → R. Then f is differentiable
on (a, b) and f ′ = g.

Using this theorem in this problem is a problem on technicalities. Our sequence of func-
tions fn for this problem is a sequence of partial sums. That sequence itself is defined as a partial
sum of another sequence of functions gt(x) = sin(3tx)/6t. First I will show that fn converges
pointwise to a function by showing that it converges uniformly to a function by the Weierstrass
test. To use it, note that:

|gt(x)| =
∣∣∣∣sin(3tx)6t

∣∣∣∣
≤ 1

6t

=: Mt

Now
∞∑
t=1

Mt converges since it is a geometric series, so we can conclude that fn converges

uniformly to some function f (so it also does pointwise to f).

Taking a derivative:

f ′
n(x) =

n∑
t=1

g′t(x)

=
n∑

t=1

cos(3tx)

2t

Now you might be scared that I passed a derivative through a sum, but in this case it is fine since
each n is finite. Now to again use the Weierstrass test, with constants Nt defined by:

|g′t(x)| =
∣∣∣∣cos(3tx)2t

∣∣∣∣
≤ 1

2t

=: Nt
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Again
∞∑
t=1

Nt converges since it is a geometric series, so f ′
n converges uniformly to some function

g in which f ′ = g. This finishes the proof that fn converges pointwise to some differentiable
function.
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