Math 127B Midterm I Spring 2025

Solutions

Problem: 1. Derivative

Assume that f and g are functions defined on all reals with:
(a) f(0) =g(0) =0,
(b) (Vz € R) f(z) = [g()],
(c) g'(0) = L.

Show that f’(0) does not exist.
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The key for showing that f’(0) does not exist is to realize x — 0 from both sides in these limits.
On the left-hand side x — 0~ with < 0 and on the right-hand side z — 0" with z > 0, and z is
the denominator in both limits above. ¢/(0) is positive, so g(z) < 0 for < 0 and g(x) > 0 for
x > 0, while f(z) > |g(z)|> 0.

Now to be a little more specific. Unwinding the statement ¢'(0) = 1 says that for any
e > 0 you can find a § > 0 such that when 0 < |z|< § we have that:
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In particular, we can choose (somewhat arbitrarily, just to introduce concrete numbers into the
problem) € = 1/2 and then:
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For x > 0 (now using absolute value bars on = to keep things simpler):
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and for z < 0:
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Expanding out the fact that f(z) > |g(x)| for both cases, first for = > 0:
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So if f/(0") were to possibly exist, it would be at most —1/2 and if f'(0") were to exist it would
be at least 1/2. These numbers are different, so f’(0) cannot possibly exist.




Problem: 2. Mean Mean Value

Assume that h is a function defined on all reals with:
(a) h(0) =0,
(b) h is even [that is (Vb) h(—b) = h(b)],
(c) h is twice differentiable [that is (Vb) h”(b) exists].

Show that for every b there is ¢ with b2h”(c) > h(b).

First a preliminary result: since h is even, b’ is odd (h/(—b) = —h/(b)). To see this:
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where A = —Ab. This also means h'(0) = 0 (since h'(0) = —h/(—0) = h'(0)).

Now for the proof. The case b = 0 is automatic. If we can show this is true for b > 0,
then it holds for b < 0 since:
h(b) = h(=b)
< (=b)*n"(c)
= b*h"(c)
So take a b > 0. The mean value theorem on h says there is a d between 0 and b such that:
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The mean value theorem on A’ says that there is a ¢ between 0 and d such that:
h(d) — W' (0)
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where in this last line I am assuming h(b) > 0 and using the fact that b/d > 1.

If h(b) < 0, the trick is to find a ¢ where h”(c) > 0, since in that case:
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The mean value theorem on h says there is a d between —b and b such that:
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The mean value theorem on h' says that there is a ¢ between 0 and d (here I am writing it like
d >0, but if d < 0 the numerator is — what I write and —0 = 0) such that:
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So I have found a ¢ where h”(c) > 0, which I said is sufficient for the h(b) < 0 case.




Problem: 3. Convergence

Show that the sequence of functions
x
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(a) converges pointwise on all reals to the function x but
(b) does not converge uniformly on all reals to the function x.

Hint: Consider using L’Hospital’s rule in (a).

(a) Computing the pointwise limit of b, (z) as n — oo:
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In going to the line labeled with (***), L’Hospital’s rule was used in the 0/0 indeterminate form.
This shows that b,(z) — z pointwise for any z.

(b) If b, were to converge on R to x, then for any ¢ > 0 we could find a natural number
N (possibly dependent on £, but definitely not x) such that when n > N we have that:
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Take x = nmw. Then we would be assured that:
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but this is not true.




Problem: 4. Series

Show that the sequence of functions
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converges pointwise on all reals to a differentiable function.

Hint: Feel free to use the fact that
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I will solve this problem similar to problem 4 on the practice midterm, by using the same theorem
from Hunter copied again here for reference:

Theorem 9.18. Suppose that (f,,) is a sequence of differentiable functions f, : (a,b) — R such
that f, — f pointwise and f/ — ¢ uniformly for some f, g : (a,b) — R. Then f is differentiable
on (a,b) and f' = g.

Denote g¢;(z) = sin(xt)/t3. Then k,(z) = th(x). I will use the Weierstrass test to
t=1

show that k, converges uniformly to some function k. First to find some Majorants M; to use for
this test:
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where S = ZMt is a finite number for some fixed natural number M. So ZMt is finite. So by
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the Weierstrass test k, — k uniformly for some function % (in particular k,, — k pointwise as well).




Now taking a derivative:
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Again using the Weierstrass test, by first finding some Majorants N;:
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Like before the sum of all N,’s is finite:
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for some natural number N and finite number 7. So k!, — ¢ uniformly for some function g.

By the cited theorem, f is differentiable.




