
Math 127B Midterm I Spring 2025

Solutions

Problem: 1. Derivative

Assume that f and g are functions defined on all reals with:

(a) f(0) = g(0) = 0,

(b) (∀x ∈ R) f(x) ≥ |g(x)|,

(c) g′(0) = 1.

Show that f ′(0) does not exist.

In terms of limits, f ′(0) (if it were to exist) and g′(0) say:

f ′(0) = lim
x→0

f(x)

x

1 = lim
x→0

g(x)

x

The key for showing that f ′(0) does not exist is to realize x → 0 from both sides in these limits.
On the left-hand side x → 0− with x < 0 and on the right-hand side x → 0+ with x > 0, and x is
the denominator in both limits above. g′(0) is positive, so g(x) < 0 for x < 0 and g(x) > 0 for
x > 0, while f(x) ≥ |g(x)|≥ 0.

Now to be a little more specific. Unwinding the statement g′(0) = 1 says that for any
ε > 0 you can find a δ > 0 such that when 0 < |x|< δ we have that:∣∣∣∣g(x)x

− 1

∣∣∣∣ < ε

−ε <
g(x)

x
− 1 < ε

1− ε <
g(x)

x
< 1 + ε

In particular, we can choose (somewhat arbitrarily, just to introduce concrete numbers into the
problem) ε = 1/2 and then:

1

2
<

g(x)

x
<

3

2

For x > 0 (now using absolute value bars on x to keep things simpler):

|x|
2

< g(x) <
3|x|
2
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and for x < 0:

−3|x|
2

< g(x) < −|x|
2

Expanding out the fact that f(x) ≥ |g(x)| for both cases, first for x > 0:

f(x) >
|x|
2

and for x < 0:

f(x) >
|x|
2

So for x > 0:

f(x)

x
>

|x|/2
x

=
1

2

and for x < 0:

f(x)

x
<

|x|/2
x

=
|x|/2
−|x|

= −1

2

So if f ′(0+) were to possibly exist, it would be at most −1/2 and if f ′(0+) were to exist it would
be at least 1/2. These numbers are different, so f ′(0) cannot possibly exist.
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Problem: 2. Mean Mean Value

Assume that h is a function defined on all reals with:

(a) h(0) = 0,

(b) h is even [that is (∀b) h(−b) = h(b)],

(c) h is twice differentiable [that is (∀b) h′′(b) exists].

Show that for every b there is c with b2h′′(c) ≥ h(b).

First a preliminary result: since h is even, h′ is odd (h′(−b) = −h′(b)). To see this:

h′(b) = lim
∆b→0

h(b+∆b)− h(b)

∆b

= lim
∆b→0

h(−b−∆b)− h(−b)

∆b

= lim
∆b′→0

h(−b+∆b′)− h(−b)

−∆b′

= −h′(−b)

where ∆b′ = −∆b. This also means h′(0) = 0 (since h′(0) = −h′(−0) = h′(0)).

Now for the proof. The case b = 0 is automatic. If we can show this is true for b > 0,
then it holds for b < 0 since:

h(b) = h(−b)

≤ (−b)2h′′(c)

= b2h′′(c)

So take a b > 0. The mean value theorem on h says there is a d between 0 and b such that:

h′(d) =
h(b)

b

The mean value theorem on h′ says that there is a c between 0 and d such that:

h′′(c) =
h′(d)− h′(0)

d− 0

=
h′(d)

d

=
h(b)

bd

; b2h′′(c) =
b

d
h(b)

≥ h(b)

where in this last line I am assuming h(b) ≥ 0 and using the fact that b/d ≥ 1.

If h(b) < 0, the trick is to find a c where h′′(c) ≥ 0, since in that case:

b2h′′(c) ≥ 0

> h(b)
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The mean value theorem on h says there is a d between −b and b such that:

h′(d) =
h(b)− h(−b)

b− (−b)

= 0

The mean value theorem on h′ says that there is a c between 0 and d (here I am writing it like
d ≥ 0, but if d < 0 the numerator is − what I write and −0 = 0) such that:

h′′(c) =
h′(d)− h′(0)

d− 0

=
0− 0

d
= 0

So I have found a c where h′′(c) ≥ 0, which I said is sufficient for the h(b) < 0 case.
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Problem: 3. Convergence

Show that the sequence of functions {
bn(x) = n sin

(x
n

)}
(a) converges pointwise on all reals to the function x but

(b) does not converge uniformly on all reals to the function x.

Hint: Consider using L’Hospital’s rule in (a).

(a) Computing the pointwise limit of bn(x) as n → ∞:

lim
n→∞

bn(x) = lim
n→∞

n sin
(x
n

)
= lim

n→∞

sin(x/n)

1/n

= lim
n→∞

(−x/n2) cos(x/n)

−1/n2
(***)

= lim
n→∞

x cos
(x
n

)
= x

In going to the line labeled with (***), L’Hospital’s rule was used in the 0/0 indeterminate form.
This shows that bn(x) → x pointwise for any x.

(b) If bn were to converge on R to x, then for any ε > 0 we could find a natural number
N (possibly dependent on ε, but definitely not x) such that when n > N we have that:∣∣∣n sin

(x
n

)
− x

∣∣∣ < ε

Take x = nπ. Then we would be assured that:

|n sin(π)− nπ| = nπ

< ε

but this is not true.
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Problem: 4. Series

Show that the sequence of functions {
kn =

n∑
t=1

(
sin(xt)

t3

)}

converges pointwise on all reals to a differentiable function.

Hint: Feel free to use the fact that

∞∑
t=M+1

1

t2
≤
ˆ ∞

M

dx

x2
=

1

M

I will solve this problem similar to problem 4 on the practice midterm, by using the same theorem
from Hunter copied again here for reference:

Theorem 9.18. Suppose that (fn) is a sequence of differentiable functions fn : (a, b) → R such
that fn → f pointwise and f ′

n → g uniformly for some f, g : (a, b) → R. Then f is differentiable
on (a, b) and f ′ = g.

Denote gt(x) = sin(xt)/t3. Then kn(x) =
n∑

t=1

gt(x). I will use the Weierstrass test to

show that kn converges uniformly to some function k. First to find some Majorants Mt to use for
this test:

|gt(x)| =
∣∣∣∣sin(xt)t3

∣∣∣∣
≤ 1

t3

=: Mt

Now:

∞∑
t=1

Mt = S +
∞∑

t=M+1

1

t3

≤ S +
∞∑

t=M+1

1

t2

≤ S +
1

M

where S =
m∑
t=1

Mt is a finite number for some fixed natural number M . So
∞∑
t=1

Mt is finite. So by

the Weierstrass test kn → k uniformly for some function k (in particular kn → k pointwise as well).
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Now taking a derivative:

k′
n(x) =

n∑
t=1

g′t(x)

=
n∑

t=1

cos(xt)

t2

Again using the Weierstrass test, by first finding some Majorants Nt:

|g′t(x)| =
∣∣∣∣cos(xt)t2

∣∣∣∣
≤ 1

t2

=: Nt

Like before the sum of all Nt’s is finite:

∞∑
t=1

Nt = T +
∞∑

t=N+1

1

t3

≤ T +
1

N

for some natural number N and finite number T . So k′
n → g uniformly for some function g.

By the cited theorem, f is differentiable.
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