Math 127B Midterm II Spring 2025 You may use one sheet of notes. Your score will be the best 4 of 5.

1. Find

$$\sum_{n=1}^{\infty} \frac{1}{n2^n}$$

2. Find a function f with

$$U(f; \{0, 1\}) - L(f; \{0, 1\}) = 1$$

and

$$U\left(f;\left\{0,\frac{1}{2},1\right\}\right) - L\left(f;\left\{0,\frac{1}{2},1\right\}\right) = \frac{1}{2}.$$

- 3. Show that $\int_0^1 \chi_{\frac{1}{2}} = 0$ by finding for every $\epsilon > 0$ a partition P of [0,1] with $-\epsilon < L(\chi_{\frac{1}{2}}; P) < U(\chi_{\frac{1}{2}}; P) < \epsilon$. Here $\chi_{\frac{1}{2}}$ is the characteristic function defined by $\chi_{\frac{1}{2}}(\frac{1}{2}) = 1$ and if $x \in [0,1] - \{\frac{1}{2}\}$ then $\chi_{\frac{1}{2}}(x) = 0$. Your P will depend on ϵ .
- 4. Assume that f and g are bounded functions on [0, 1].
 - (a) Show that if f and g are continuous at c then so is f + g.
 - (b) Show that $D(f+g) \subseteq D(f) \cup D(g)$.

Here D(f) is the set of values in [0, 1] at which f is not continuous.

5. Assume that f is monotone increasing from 0 to 1 on [0, 1](that is: if $0 \le x \le y \le 1$ then $0 = f(0) \le f(x) \le f(y) \le f(1) =$ 1). Show that $\lim_{n\to\infty} \int f^n$ exists.