Math 127B Practice Midterm II Spring 2025 You may use one sheet of notes. Your score will be the best 4 of 5.

- 1. (power series) Write A, B and C for the radii of convergence of the three power series $\sum_{k=0}^{\infty} a_k x^k$, $\sum_{k=0}^{\infty} b_k x^k$ and $\sum_{k=0}^{\infty} a_k b_k x^k$.
 - (a) Show that $C \ge AB$.
 - (b) Find an example with C = AB.
 - (c) Find an example with C > AB.
- 2. (partition) Consider the topologist's sine curve with $f(x) = \sin(\frac{1}{x})$ if $0 < |x| \le 1$ and f(0) = 0. Find a partition P of [-1, 1] for which U(f, P) - L(f, P) < 1.
- 3. (integrable algebra) Consider a bounded function f on the interval I = [a, b]. Write $f_+(x) = f(x)$ if $f(x) \ge 0$ and $f_+(x) = 0$ otherwise. Write $f_-(x) = f_+(x) f(x)$. Thus f_{\pm} are both non-negative and $f = f_+ f_-$. Show that f is integrable on I if and only if f_+ and f_- are both integrable on I.
- 4. (ftc) Assume that f is an integrable function on I = [0, 1] and hence that $F(x) = \int_0^x f$ is defined on I.
 - (a) Show that F is differentiable at some point in (0, 1).
 - (b) Find an example for which F is not differentiable at $\frac{1}{2}$.
- 5. (discontinuity) Find a bounded function f on [-1, 1] for which $D^1(f) = \{\frac{1}{2}\} \subseteq D^{\frac{1}{2}}(f) = [-1, 0] \cup \{\frac{1}{2}\} \subseteq D(f) = [-1, 0] \cup \{\frac{1}{2}, 1\}$ and $\int_0^1 f = 1$.