
MAT 127B Midterm 2 solutions
TAs: Raymond Chan (B01, B02) Emails: rychan@ucdavis.edu

1. Find
∞∑
n=1

1

n2n
.

Solution:

Start with the geometric series
1

1− x
=

∞∑
n=0

xn

Integration gives ∫ x

0

1

1− t
dt =

∫ x

0

∞∑
n=0

tn dt

As the sum converges uniformly, we can pass the integrals through the sum and get

− ln |1− t| =
∞∑
n=0

∫ x

0

tn dt =
∞∑
n=0

xn+1

n+ 1
=

∞∑
n=1

xn

n

so putting x = 1/2 (which is within the radius of convergence),

∞∑
n=1

1

n2n
= − ln |1− 1/2| = − ln 2−1 = ln 2

2. Find a function f with
U(f ; {0, 1})− L(f ; {0, 1}) = 1

and

U
(
f ;

{
0, 1

2
, 1
})

− L
(
f ;

{
0, 1

2
, 1
})

=
1

2
.

Solution:

Let f : [0, 1] → R be the function

f(x) = χ0(x) =

{
1 if x = 0

0 if x ̸= 0

One checks easily that

U(f ; {0, 1}) = 1, L(f ; {0, 1}) = 0

U
(
f ;

{
0, 1

2
, 1
})

=
1

2
, L

(
f ;

{
0, 1

2
, 1
})

= 0

1



3. Show that
∫ 1

0
χ1/2 = 0 by finding for every ϵ > 0 a partition P of [0, 1] with

−ϵ < L(χ1/2;P ) < U(χ1/2;P ) < ϵ.

Here χ1/2 is the characteristic function defined by χ1/2(
1
2
) = 1 and if x ∈ [0, 1] \ {1

2
}

then χ1/2(x) = 0. Your P will depend on ϵ.

Solution:

Let

P =

{
0,

1

2
− ϵ

3
,
1

2
+

ϵ

3
, 1

}
Then

L(χ1/2;P ) =

(
1

2
− ϵ

3

)
· 0 + 2ϵ

3
· 0 +

(
1

2
− ϵ

3

)
· 0 = 0

U(χ1/2;P ) =

(
1

2
− ϵ

3

)
· 0 + 2ϵ

3
· 1 +

(
1

2
− ϵ

3

)
· 0 =

2ϵ

3

and therefore −ϵ < L(χ1/2;P ) < U(χ1/2;P ) < ϵ.

4. Assume that f and g are bounded functions on [0, 1].

(a) Show that if f and g are continuous at c then so is f + g.

(b) Show that D(f + g) ⊆ D(f) ∪D(g).
Here D(f) is the set of values in [0, 1] at which f is not continuous.

Solution:

(a) This is clear from the equation

lim
h→0

f(c+ h) + g(c+ h) = f(c) + g(c)

since f, g are continuous at c. You can also do it more formally. Let ϵ > 0. Since
by continuity, there is δ > 0 such that for all |h| < δ,

|f(c+ h)− f(c)| < ϵ

2

|g(c+ h)− g(c)| < ϵ

2

By triangular inequality,

|(f(c+h)+g(c+h))−(f(c)+g(c))| ≤ |f(c+h)−f(c)|+|g(c+h)−g(c)| < ϵ

2
+
ϵ

2
= ϵ

(b) By (a), we have
D(f)c ∩D(g)c ⊆ D(f + g)c

Taking complement on both sides yields

D(f) ∪D(g) ⊇ D(f + g)
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5. Assume that f is monotone increasing from 0 to 1 on [0, 1]
(that is: if 0 ≤ x ≤ y ≤ 1 then 0 = f(0) ≤ f(x) ≤ f(y) ≤ f(1) = 1).
Show that limn→∞

∫
fn exists.

Solution:

We first prove this for the case f(x) ̸= 1 for all x ̸= 1, and the general case follows
quickly from this.

In this case, we claim that the limit is 0. First, observe that

f(x) := lim
n→∞

f(x)n =

{
0 if x ̸= 1

1 if x = 1

If f is continuous (from the left) at x = 1. Then fn → f pointwisely but not uniformly.
(There is no fn strictly within a ϵ-tubular neighborhood of f , due to continuity.) Thus,
we can’t pass the limit into the integral in general. Instead, we shall prove it using the
definition of limit. Let ϵ > 0 and consider the point 1 − ϵ

2
. We can split the integral

into ∫ 1

0

fn =

∫ 1− ϵ
2

0

fn +

∫ 1

1− ϵ
2

fn

Now let N ∈ N sufficiently large so that

f(1− ϵ

2
)N <

ϵ
2

1− ϵ
2

Since f is monotonically increasing, we have for all n > N ,∫ 1− ϵ
2

0

fn +

∫ 1

1− ϵ
2

fn <
(
1− ϵ

2

)
f(1− ϵ

2
)n +

ϵ

2
f(1) < ϵ

so limn→∞
∫ 1

0
fn = 0.

For the general case, let
c = inf{x ∈ [0, 1] | f(x) = 1}

so that c is the smallest possible value such that f(x) < 1 for all x < c. Then∫ 1

0

fn =

∫ c

0

fn +

∫ 1

c

fn =

(∫ c

0

fn

)
+ (1− c)

By the previous case, limn→∞
∫ c

0
fn = 0, so limn→∞

∫ 1

0
fn exists.
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