MAT 127B HW 1 Solutions

Wencin Poh
April 3, 2020

Problem 1 (Exercise 5.2.3.) By imitating the Dirichlet constructions in Section 4.1, construct a function on \mathbb{R} that is differentiable at a single point.

Solution There are many candidates based on Dirichlet’s construction. One of the them is the function

$$g(x) = \begin{cases} x^2, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

We first show that g is differentiable at $x = 0$. By construction of $g(x)$, we observe that $0 \leq |g(x)| \leq |x|^2$ for all $x \in \mathbb{R}$, so that $0 \leq \frac{|g(x) - g(0)|}{x} = \frac{|g(x)|}{x} \leq |x|$. Furthermore, $\lim_{x \to 0} |x| = 0 = \lim_{x \to 0} 0$. By Squeeze Theorem, this implies that $\lim_{x \to 0} \frac{|g(x) - g(0)|}{x} = 0$.

Note that one cannot just consider left hand and right hand limits of the divided difference since both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense in \mathbb{R} (there is no “universal” expression of values of $g(x)$ on either side).

We will then show that g is not differentiable elsewhere, by showing that g is not continuous elsewhere. This follows from either of the following proofs.

Proof (High-level proof) Note that $g(x) = x^2 1_\mathbb{Q}(x)$, where

$$1_\mathbb{Q}(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

is Dirichlet’s function. It is known (from say, MAT 127A) that Dirichlet’s function is not continuous for all $x \neq 0$. As quotient of continuous functions are continuous (as long as one avoids division by 0), for all $x \neq 0$, g cannot be continuous at x, since this implies that the Dirichlet’s function $1_\mathbb{Q}(x) = \frac{g(x)}{x^2}$ is also continuous at x. \[\Box\]

Proof (Direct $\varepsilon-\delta$ proof) To show that g is not continuous at $x = a$ for all $a \neq 0$, we need to prove the following statement:

“There is an $\varepsilon > 0$ (possibly depending on a) such that for every $\delta > 0$, there is an $x \in \mathbb{R}$ with both $|x - a| < \delta$ and $|f(x) - f(a)| \geq \varepsilon$.”

Either a is rational or irrational.

If $a \in \mathbb{Q}$, set $\varepsilon = \frac{|a|^2}{2}$. Since $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R}, for every $\delta > 0$, there is an $x \in \mathbb{R} \setminus \mathbb{Q}$ such that $x \in (a - \delta, a + \delta)$, that is, $|x - a| < \delta$.

Therefore, we have

$$|f(x) - f(a)| = |0 - a^2| = |a|^2 \geq \frac{|a|^2}{2} = \varepsilon.$$

On the other hand, if $a \notin \mathbb{Q}$, set $\varepsilon = \frac{|a|^2}{4}$. Since \mathbb{Q} is dense in \mathbb{R}, for every $\delta > 0$, there is an $x \in \mathbb{Q}$ such that $x \in (a - \delta', a + \delta')$, where $\delta' = \min\left(\delta, \frac{|a|}{2}\right)$. In other words, $|x - a| < \delta$ and $|x - a| < \frac{|a|}{2}$ both hold. By the reverse triangle inequality, the latter implies that $|x| \geq |a| - |a - x| = |a| - |x - a| > \frac{|a|}{2}$ or that $|x|^2 > \frac{|a|^2}{4}$.

Therefore, we have

$$|f(x) - f(a)| = |x^2 - 0| = |x|^2 > \frac{|a|^2}{2} = \varepsilon.$$

In either case, we have proved the required statement, that is, for all $a \neq 0$, g is not continuous at $x = a$. \[\Box\]
In summary, we have constructed a function \(g \) that is differentiable at a single point (and nowhere else).

Problem 2 (Exercise 5.2.4.) Let

\[
f_a(x) = \begin{cases}
 x^a, & \text{if } x \geq 0, \\
 0, & \text{if } x < 0.
\end{cases}
\]

a. For which values of \(a \) is \(f \) continuous at zero?

b. For which values of \(a \) is \(f \) differentiable at zero? In this case, is the derivative function continuous?

c. For which values of \(a \) is \(f \) twice-differentiable?

Solution

a. Firstly, \(f_a(0) \) is defined for all values of \(a \) except when \(a = 0 \) (0\(^0\) is taken to be undefined). We have \(\lim_{x \to 0^-} f_a(x) = \lim_{x \to 0^+} 0 = 0 \), whereas \(\lim_{x \to 0^+} f_a(x) \) equals to

\[
\lim_{x \to 0^+} x^a = \begin{cases}
 0, & \text{if } a > 0, \\
 1, & \text{if } a = 0, \\
 +\infty, & \text{if } a < 0.
\end{cases}
\tag{1}
\]

Therefore, we see that for \(\lim_{x \to 0} f_a(x) \) to exist, necessarily \(a > 0 \). Furthermore, whenever \(a > 0 \), \(\lim_{x \to 0} f_a(x) = f_a(0) = 0 \), so \(f_a \) is continuous at zero if and only if \(a > 0 \).

b. We use the definition of derivative at \(x = 0 \) and consider the one-sided limits \(\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} \) and \(\lim_{h \to 0^-} \frac{f(h) - f(0)}{h} \). The latter is 0 since \(f(x) = 0 \) for all \(x < 0 \).

Moreover, we obtain

\[
\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h^a - 0}{h} = \lim_{h \to 0^+} h^{a-1},
\]

hence, by comparing against Equation (1) (with \(a - 1 \) substituted for \(a \)), we argue similarly as in part (a) that \(f_a \) is differentiable at zero if and only if \(\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} \) exists (and equals 0), which holds if and only if \(a > 1 \).

In the case when \(a > 1 \), we claim that the derivative function is continuous. To see this, we first compute \(f_a'(x) \) for all \(x \in \mathbb{R} \). For all \(x > 0 \), we compute \(f_a'(x) = (x^a)' = ax^{a-1} \). For all \(x < 0 \), we compute \(f_a'(x) = 0' = 0 \).

Therefore, one has

\[
f_a'(x) = \begin{cases}
 ax^{a-1}, & \text{if } x > 0, \\
 0, & \text{if } x \leq 0.
\end{cases}
\tag{2}
\]

Notice that \(f_a'(x) = 0 \) for all \(x \leq 0 \) (including 0). The functions \(ax^{a-1} \) for all \(x > 0 \) and 0 for all \(x < 0 \) are continuous. Additionally, we observe that \(\lim_{x \to 0^+} f_a(x) = 0 = f_a(0) \), which proves that \(f_a'(x) \) is continuous throughout \(\mathbb{R} \).

c. Based on Equation (2), we may compute the derivative function of \(f_a'(x) \), denoted \(f_a''(x) \) as follows. For all \(x > 0 \), we compute \(f_a''(x) = (ax^{a-1})' = a(a-1)x^{a-2} \). For all \(x < 0 \), we compute \(f_a'(x) = 0' = 0 \).

Moreover, for \(x = 0 \), we obtain

\[
\lim_{x \to 0^+} f_a''(x) = \lim_{h \to 0^+} \frac{f'(h) - f'(0)}{h} = \lim_{h \to 0^+} \frac{ah^{a-1} - 0}{h} = \lim_{h \to 0^+} ah^{a-2},
\]

and \(\lim_{x \to 0^-} f_a''(x) = 0 = f_a(0) \).

If we want \(f_a \) to be twice differentiable, then we need \(\lim_{h \to 0^+} ah^{a-2} = \lim_{x \to 0^+} f_a''(x) = \lim_{x \to 0^-} f_a''(x) = 0 \).

Comparing against Equation (1) (with \(a - 2 \) substituted for \(a \)), we see that this equality holds if and only if \(a > 2 \). This shows that \(f_a \) is twice differentiable if and only if \(a > 2 \).