Problem 1 (Exercise 6.2.10.) Let \(f \) be uniformly continuous on all of \(\mathbb{R} \), and define a sequence of functions by \(f_n(x) = f \left(x + \frac{1}{n} \right) \). Show that \(f_n \to f \) uniformly. Give an example to show that this proposition fails if \(f \) is only assumed to be continuous and not uniformly continuous on \(\mathbb{R} \).

Solution Text in italicized font is meant to be explanatory and is not expected to be part of a proof.

We need to show that the following statement holds:

\[
\forall \varepsilon > 0 \ \exists N \in \mathbb{Z}_{>0} \ \forall x \in \mathbb{R} \ \forall n \in \mathbb{Z}_{>0} : \ n > N \implies \left| f \left(x + \frac{1}{n} \right) - f(x) \right| < \varepsilon .
\]

In other words, “For all \(\varepsilon \), there is a positive integer \(N \), such that for all \(x \in \mathbb{R} \) and for all positive integers \(n \), \(n > N \) implies \(\left| f \left(x + \frac{1}{n} \right) - f(x) \right| < \varepsilon \).”

Let \(\varepsilon > 0 \) be arbitrary. Since \(f \) is uniformly continuous, there is a \(\delta > 0 \) such that for all \(a, b \in \mathbb{R} \), \(|a - b| < \delta \) implies that \(|f(a) - f(b)| < \varepsilon \).

Define \(N \) as the smallest positive integer such that \(\frac{1}{N} < \delta \). This is possible by the Archimedean property of the real numbers. For all \(x \in \mathbb{R} \) and for all integers \(n \), consider \(a = x + \frac{1}{n} \) and \(b = x \). Now, \(n > N \) implies that \(\frac{1}{n} < \frac{1}{N} \) so that \(|a - b| = \frac{1}{n} < \delta \).

Uniform continuity of \(f \) implies that \(\left| f \left(x + \frac{1}{n} \right) - f(x) \right| < \varepsilon \). It follows that \(f_n \to f \) uniformly.

Before we present a counterexample showing that the proposition fails if \(f \) is allowed to be continuous but not uniformly continuous, recall that we need to show that the following statement holds for such an \(f \):

\[
\exists \varepsilon > 0 \ \forall N \in \mathbb{Z}_{>0} \ \exists x \in \mathbb{R} \ \exists n \in \mathbb{Z}_{>0} : \ n > N \text{ and } \left| f \left(x + \frac{1}{n} \right) - f(x) \right| \geq \varepsilon .
\]

In other words, “There is an \(\varepsilon \) such that for all positive integers \(N \), there exists \(x \in \mathbb{R} \) and there is a positive integer \(n \) such that \(n > N \) but \(\left| f \left(x + \frac{1}{n} \right) - f(x) \right| < \varepsilon \).”

Now, consider \(f(x) = x^2 \) on \(\mathbb{R} \). Set \(\varepsilon = 1 \). For every positive integer \(N \), set \(x = \frac{N+1}{2} \) and \(n = N+1 \). It is clear that \(n > N \), but then

\[
\left| f \left(x + \frac{1}{n} \right) - f(x) \right| = \left| \left(x + \frac{1}{n} \right)^2 - x^2 \right|
= \left| \frac{2x}{n} + \frac{1}{n^2} \right|
= \frac{N+1}{N+1} + \frac{1}{(N+1)^2}
= 1 + \frac{1}{(N+1)^2}
\geq 1 .
\]

It follows that \((f_n) \) does not converge uniformly to \(f \) on \(\mathbb{R} \).
Problem 2 (Exercise 6.2.11.) Assume \((f_n)\) and \((g_n)\) are uniformly convergent sequences of functions.

a. Show that \((f_n + g_n)\) is a uniformly convergent sequence of functions.

b. Give an example to show that the product \((f_ng_n)\) may not converge uniformly.

c. Prove that if there exists an \(M > 0\) such that \(|f_n| \leq M\) and \(|g_n| \leq M\) for all \(n \in \mathbb{N}\), then \((f_ng_n)\) does converge uniformly.

Solution

a. Suppose \(A\) is the domain of both \(f\) and \(g\). Let \(\varepsilon > 0\). Since \((f_n)\) converges uniformly to \(f\), there is a positive integer \(N_1\) such that for all \(x \in A\) and for all integers \(n, N_1\) implies that \(|f_n(x) - f(x)| < \frac{\varepsilon}{2}\).

Since \((g_n)\) converges uniformly to \(g\), there is a positive integer \(N_2\) such that for all \(x \in A\) and for all integers \(n, N_2\) implies that \(|g_n(x) - g(x)| < \frac{\varepsilon}{2}\).

Set \(N = \max(N_1, N_2)\). For all \(x \in A\) and for all integers \(n\), we have the following to hold if \(n > N\):

\[
|\(f_n(x) + g_n(x)\) - (f(x) + g(x))| = |(f_n(x) - f(x)) + (g_n(x) - g(x))| \\
\leq |f_n(x) - f(x)| + |g_n(x) - g(x)| \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
= \varepsilon.
\]

It follows that \((f_n + g_n)\) uniformly converges to \(f + g\) on \(A\).

b. For all integers \(n \geq 1\), let \((f_n)\) and \((g_n)\) be sequences of functions on \(\mathbb{R}\) given by \(f_n(x) = x^2\) and \(g_n(x) = \frac{1}{n}\).

We claim that both \((f_n)\) and \((g_n)\) are uniformly convergent on \(\mathbb{R}\), but then \((f_ng_n)\) is not uniformly convergent on \(\mathbb{R}\).

As \((f_n)\) is a constant sequence of functions \(x\), it automatically converges uniformly to \(f(x) = x\) on \(\mathbb{R}\).

Meanwhile, \((g_n)\) is a sequence of constant functions that converges pointwise to the zero function, \(g(x) = 0\). As the rate of convergence does not depend on \(x \in \mathbb{R}\), we conclude that \((g_n)\) converges to \(g\) on \(\mathbb{R}\).

Now, if \((f_ng_n)\) were to converge uniformly, it would have to converge to \(f(x)g(x) = 0\). However, we have \(|f_n(x)g_n(x) - f(x)g(x)| = \left|\frac{x}{n}\right|\), so if we set \(\varepsilon = 1\), then for all integers \(N > 0\), we may choose \(x = n = N + 1\) so that \(n > N\) but then

\[
|f_n(x)g_n(x) - f(x)g(x)| = \left|\frac{x}{n}\right| = \frac{N + 1}{N + 1} = 1 \geq \varepsilon.
\]

Thus, we conclude that \((f_ng_n)\) does not converge uniformly on \(\mathbb{R}\).

c. Suppose that \(A\) is the domain of both \(f\) and \(g\). We first prove that \(|g(x)| < M + 1\) for all \(x \in A\). Since \((g_n)\) uniformly converges to \(g\), there is an \(N'\) such that for all \(x \in A\) and for all integers \(n, N'\) implies that \(|g_n(x) - g(x)| < 1\). In particular, we have

\[
|g(x)| < |g_{2N}(x)| + |g(x) - g_{2N}(x)| < M + 1.
\]

Let \(\varepsilon > 0\) be arbitrary. Since \((f_n)\) converges uniformly to \(f\), there is a positive integer \(N_1\) such that for all \(x \in A\) and for all integers \(n, N_1\) implies that \(|f_n(x) - f(x)| < \frac{\varepsilon}{2M}\). Since \((g_n)\) converges uniformly to \(g\), there is a positive integer \(N_2\) such that for all \(x \in A\) and for all integers \(n, N_2\) implies that \(|g_n(x) - g(x)| < \frac{\varepsilon}{2(M + 1)}\).

Hence, we have

\[
|f_n(x)g_n(x) - f(x)g(x)| = |f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)| \\
\leq |f_n(x)||g_n(x) - g(x)| + |g(x)||f_n(x) - f(x)| \\
< M \cdot \frac{\varepsilon}{2M} + (M + 1) \cdot \frac{\varepsilon}{2(M + 1)} \\
= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
= \varepsilon.
\]

Thus, \((f_ng_n)\) uniformly converges to \(f(x)g(x)\) on \(A\).
Problem 3 (Exercise 6.2.12.) Theorem 6.2.6. has a partial converse. Assume \(f_n \to f \) pointwise on a compact set \(K \) and assume that for each \(x \in K \) the sequence \(f_n(x) \) is increasing. Follow these steps to show that if \(f_n \) and \(f \) are continuous on \(K \), then the convergence is uniform.

a. Note that as the sequence \(f \) are continuous on set \(K \).

b. Assume the hypothesis in part (a). As in the problem, let \(\varepsilon > 0 \) be arbitrary, and define \(K_n = \{ x \in K \mid g_n(x) \geq \varepsilon \} \). Argue that \(K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots \) is a nested sequence of compact sets, and use this observation to finish the argument.

Solution

a. Note that as the sequence \(f_n(x) \) is increasing for all \(x \in K \) and \(f(x) = \lim_{n \to \infty} f_n(x) \), one has \(f(x) \geq f_n(x) \) for all \(x \in K \). Furthermore, for all positive integers \(m, n \), we have \(m < n \) to imply that \(f(x) - f_n(x) \leq f(x) - f_m(x) \). Also, note that \(f - f_n \) is continuous as it is a difference of two continuous functions. Then, the hypothesis translates into the following: “Assume that \(g_n \to 0 \) pointwise on a compact set \(K \) and assume that for each \(x \in K \), the sequence \(g_n(x) \) is decreasing. Assume further that \(g_n \) is continuous for all positive integers \(n \).”

b. Assume the hypothesis in part (a). As in the problem, let \(\varepsilon > 0 \) be arbitrary, and define \(K_n = \{ x \in K \mid g_n(x) \geq \varepsilon \} \).

We claim that for all positive integers \(r \), \(K_r \supseteq K_{r+1} \). Indeed, if we let \(r \) be arbitrary, and suppose that \(x \in K_{r+1} \), then \(g_{r+1}(x) \geq \varepsilon \). However, since the sequence \(g_n(x) \) is decreasing \(g_r(x) \geq g_{r+1}(x) \geq \varepsilon \), so that \(x \in K_r \) too.

Moreover, each \(K_n \) is a preimage of \([\varepsilon, \infty)\) under the continuous function \(g_n \). Since \([\varepsilon, \infty)\) is closed and preimage of closed sets under a continuous function is closed, each \(K_n \) is a closed subset of the compact set \(K \). Note also that closed subsets of compact sets is again compact.

It follows that \(K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots \) is a nested sequence of compact sets. Therefore, if we consider \(U_n = K \setminus K_n \), each \(U_n \) is an open set and \(\{ U_n \mid n \in \mathbb{Z}_{>0} \} \) is a family of open sets that cover \(K \). By the compactness of \(K \), there is a finite subcover by say, the open set \(U_{i_1}, U_{i_2}, \ldots, U_{i_m} \) for some positive integer \(m \). Since \(U_1 \subseteq U_2 \subseteq U_3 \subseteq \ldots \) and that \(U_{i_1}, U_{i_2}, \ldots, U_{i_m} \) cover \(K \), we conclude that indeed \(U_{i_m} = K \) and hence also \(U_n = K \) for all \(n > i_m \). Note that \(U_n = \{ x \in K \mid g_n(x) < \varepsilon \} \) for every positive integer \(n \).

Therefore, we have proved that for every \(\varepsilon > 0 \), there is a positive integer \(N = i_m \) such that for all \(x \in K \) and for all integers \(n, n > N \) implies that \(g_n(x) < \varepsilon \). This completes the proof that \(g_n \to 0 \) uniformly, hence \(f_n \to f \) uniformly.