MAT 127B HW 16 Solutions

Wencin Poh

May 12, 2020

Problem 1 Show that \(\eta(x) \) in Example 10.33 is smooth but not real analytic.

Solution *Text in italicized font is meant to be explanatory and is not expected to be part of a proof.*

Recall that \(\eta \) is given by \(\eta(x) = \phi(1 - x^2) \), where

\[
\phi(x) = \begin{cases}
 e^{-1/x}, & \text{if } x > 0, \\
 0, & \text{otherwise.}
\end{cases}
\]

Furthermore, we know that \(\phi \) is smooth and \(\phi^{(n)}(0) = 0 \) for all \(n \geq 0 \).

We first check that \(\eta \) is smooth by showing that \(\eta^{(n)}(x) \) is defined for all \(x \in \mathbb{R} \) and for all integers \(n \geq 1 \).

Indeed, it is relatively straightforward to verify, by repeatedly using the Chain Rule, that for every \(n \geq 1 \), there are polynomials \(f_1(x), f_2(x), \ldots, f_n(x) \) such that \(\eta^{(n)}(x) = \sum_{k=1}^{n} f_k(x)\phi^{(k)}(1 - x^2) \). To see this more carefully, we have \(\eta'(x) = (-2x)\phi'(1 - x^2) \) by using the Chain Rule. Letting \(m \) be arbitrary with \(m \geq 1 \) and assuming that \(\eta^{(m)}(x) = \sum_{k=1}^{m} f_k(x)\phi^{(k)}(1 - x^2) \) for some polynomials \(f_1(x), f_2(x), \ldots, f_n(x) \), we use the Chain Rule again to obtain

\[
\eta^{(m+1)}(x) = \sum_{k=1}^{m} f_k'(x)\phi^{(k)}(1 - x^2) - 2xf_k(x)\phi^{(k+1)}(1 - x^2)
\]

\[
= f_1'(x)\phi'(1 - x^2) + \sum_{k=2}^{m} (f_k'(x) - 2xf_{k-1}(x))\phi^{(k)}(1 - x^2) - 2xf_m(x)\phi^{(m+1)}(1 - x^2)
\]

\[
= \sum_{k=1}^{m+1} g_k(x)\phi^{(k)}(1 - x^2),
\]

where \(g_1(x) = f_1'(x) \), \(g_k(x) = f_k'(x) - 2xf_{k-1}(x) \) for \(k = 2, 3, \ldots, m \) and \(g_{m+1}(x) = -2xf_m(x) \) are polynomials.

This shows that \(\eta \) is smooth and in fact, \(\eta^n(1) = \sum_{k=1}^{n} f_k(1)\phi^{(k)}(0) = 0 = \sum_{k=1}^{n} f_k(-1)\phi^{(k)}(0) = \eta^{(n)}(-1) \) for all integers \(n \geq 0 \).

However, the power series associated to \(\eta \) centered at 1 is

\[
\sum_{n=0}^{\infty} \frac{\eta^{(n)}(1)}{n!} (x-1)^n = 0,
\]

yet \(\eta(x) = e^{-1/(1-x^2)} \neq 0 \) for all \(|x| < 1 \). Thus, there is no \(\varepsilon \)-neighborhood of 1 where \(\eta(x) = \sum_{n=0}^{\infty} \frac{\eta^{(n)}(1)}{n!} (x-1)^n \) for all \(x \) in the neighborhood, so \(\eta \) is smooth, but not analytic. *A similar argument can be made if one uses -1 instead of 1.*
Problem 2 Find a power series \(F(x) = \sum_{n=1}^{\infty} a_n x^n \) with \(F(0) = 1 \) and \(F(x) \cdot F(x) = F'(x) \).

Solution Let \(F(x) \) be such a power series. We claim that for all \(n \geq 0 \), \(F^{(n)}(x) = n! [F(x)]^{n+1} \).

Let \(P(n) \) be the statement that \(F^{(n)}(x) = n! [F(x)]^{n+1} \) for each integer \(n \geq 0 \). \(P(0) \) holds because we have the convention that \(F^{(0)}(x) = F(x) \).

Let \(k \geq 0 \) be an arbitrary integer and assume that \(F^{(k)}(x) = k! [F(x)]^{k+1} \). Then, by Chain Rule, we have

\[
F^{(k+1)}(x) = k!(k+1)[F(x)]^{k} [F'(x)] = (k+1)! [F(x)]^{k} [F(x)]^2 = (k+1)! [F(x)]^{k+2}.
\]

By induction, we have proved that \(F^{(n)}(x) = n! [F(x)]^{n+1} \) for all \(n \geq 0 \).

The power series associated to \(F(x) \) is then

\[
\sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{n! [F(0)]^{n+1}}{n!} x^n = \sum_{n=0}^{\infty} x^n.
\]

It is well-known that the geometric series \(\sum_{n=0}^{\infty} x^n \) converges if and only if \(|x| < 1 \), so \(F(x) = \sum_{n=0}^{\infty} x^n \) is well-defined and is the desired power series.

\(\Box \)