The hypothesis in Theorem 6.3.1 is unnecessarily strong. We actually do not need to assume that \(f_n(x) \to f(x) \) at each point in the domain because the assumption that the sequence of derivatives \((f'_n) \) converges uniformly is nearly strong enough to prove that \((f_n) \) converges, uniformly in fact. Two functions with the same derivative may differ by a constant, so we must assume that there is at least one point \(x_0 \) where \(f_n(x_0) \to f(x_0) \).

Theorem 6.3.2. Let \((f_n) \) be a sequence of differentiable functions defined on the closed interval \([a, b]\), and assume \((f'_n) \) converges uniformly on \([a, b]\). If there exists a point \(x_0 \in [a, b] \) where \(f_n(x_0) \) is convergent, then \((f_n) \) converges uniformly on \([a, b]\).

Proof. Exercise 6.3.5.

Combining the last two results produces a stronger version of Theorem 6.3.1.

Theorem 6.3.3. Let \((f_n) \) be a sequence of differentiable functions defined on the closed interval \([a, b]\), and assume \((f'_n) \) converges uniformly to a function \(g \) on \([a, b]\). If there exists a point \(x_0 \in [a, b] \) for which \(f_n(x_0) \) is convergent, then \((f_n) \) converges uniformly. Moreover, the limit function \(f = \lim f_n \) is differentiable and satisfies \(f' = g \).