Math 127B Spring 2020 Practice Final

- 1. Consider the functions $f_n(x) = \sum_{k=1}^n \frac{e^{-kx}}{\sqrt{k}}$.
 - (a) Show that f_n converges pointwise in $(0, \infty)$ but not at 0 and call the limit f(x).
 - (b) Determine whether the convergence is uniform.
 - (c) Show that f' exists in $(0, \infty)$.
 - (d) Show that $\int_{x=0}^{\infty} f(x) dx$ exists.
- 2. Show that the vector space of real analytic functions f in \mathbb{R} which are equal to their own tenth derivative $(f^{(10)} = f)$ is (exactly) 10 dimensional.
- 3. Show that if $S \subset [0,1]$ is countable then there is f which is Riemann integrable in [0,1] with $\int_{x=0}^{1} f(x) dx = 0$ and $(\forall s \in S)$ we have f(s) > 0.
- 4. Find bounded functions f and g on [-1, 1] so that (fg)'''(0) does not exist but for every bounded function k on [-1, 1] we have (fk)''(0) exists.
- 5. If $\{f_n\}$ is a sequence of functions converging pointwise to f define $T(\{f_n\}) = F$ with $F(x) = \lim_{n \to \infty} n(f_n(x) f(x))$ if it exists. Show that if $T(\{f_n\})$ and $T(\{g_n\})$ exist then $T(\{f_ng_n\})$ exists.
- 6. Show that if f and g are differentiable in \mathbb{R} and periodic with f(x+1) = f(x) and g(x+1) = g(x) and $|f'| + |g'| \ge 1$ then for every $r \in \mathbb{R}$ there is c with $\frac{f'(c)}{g'(c)} = r$.
- 7. Show that if $f:(0,1]\to \mathbb{R}$ is monotone decreasing then

$$\sum_{n=1}^{\infty} \frac{1}{n^2} f\left(\frac{1}{n}\right)$$

converges iff the improper integral

$$\int_{x=0}^{1} f(x) dx$$

converges.

Hint: Consider also the two series $\sum \frac{1}{n^2 \pm n} f(\frac{1}{n})$ and their difference.