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5.2.7 Let

ga(x) =

{
xa sin( 1

x ), if x 6= 0

0, if x = 0

Find a particular (potentially noninteger) value for a so that

(a) ga is differentiable on R but such that g′a is unbounded on [0, 1].

We first find a ∈ R such that ga is differentiable on R. To do so, observe that ga is differentiable on
R \ {0} for all a ∈ R, because xa (for all a ∈ R), sin(x) and 1

x are all differentiable on R \ {0}. It is left to
consider the case where x = 0. From the definition of differentiability, we know ga is differentiable at 0 if

lim
x→0

ga(x)− ga(0)

x
= lim

x→0

xa sin( 1
x )

x
= lim

x→0
xa−1 sin

( 1

x

)
(a.1)

exists. Here we have −1 ≤ sin(1/h) ≤ 1 for all h ∈ R, so the above limit is bounded if and only if ha−1 is
bounded as h → 0, which is the case when a ≥ 1. When a = 1, the limit in (a.1) becomes limx→0 sin

(
1
x

)
which does not exists (see Example 4.2.6 from Abbott). When a > 1, we have∣∣∣xa−1 sin

( 1

x

)∣∣∣ ≤ |x|a−1 ∣∣∣ sin ( 1

x

)∣∣∣︸ ︷︷ ︸
≤1

≤ |x|a−1 → 0 as x→ 0 (a.2)

This means that ga is differentiable on R if and only if a > 1. Apply the differentiaion rules, we get for a ≥ 1
that

g′a(x) = axa−1 sin
( 1

x

)
− xa−2 cos

( 1

x

)
for x 6= 0 and g′a(0) = lim

x→0
xa−1 sin

( 1

x

)
= 0 (a.3)

Now, we find a ∈ R>1 for which g′a is unbounded on [0, 1]. Note that the first term of g′a is bounded on [0, 1]
for all a > 1 because ∣∣∣xa−1 sin

( 1

x

)∣∣∣ ≤ |x|a−1 ≤ 1a−1 ≤ 1 <∞

Therefore, it suffices to find a > 1 such that xa−2 cos( 1
x ) is unbounded on [0, 1]. Because cos(x) is also a

bounded function, the problem is reduced to the case of finding a > 1 such that xa−2 is unbounded on [0, 1].
To do so, we first show that xa−2 is bounded on (0, 1] for all a > 1, then consider the case where x = 0.
Fix x ∈ (0, 1] and a ∈ R>1, then there exists N ∈ N such that x > 1

N . It follows that for any a > 1 and
x ∈ (0, 1], we have |xa−2| ≤ | 1x |

2−a ≤ N2−a <∞. Last, we have xa−2 →∞ as x→ 0+ if and only if a < 2.
This means that a ∈ (1, 2).

(b) ga is differentiable on R with g′a continuous but not differentiable at zero.

With part (a), we first find a > 1 such that g′a is continuous at 0. From (a.3) we know that ga is
differentiable on R for a > 1 with g′a continuous on R\{0}. It remains to find a > 1 such that limx→0− g′a(x) =
0 = limx→0− g′a(x). To do so, first recall that we showed at the end of part (a) that g′a blows up at 0 for
a ∈ (1, 2), so a has to be at least 2. Also, we know from (a.2) that the first term of g′a in (a.3) goes to 0 as
x→ 0 for a > 1. The same argument as in (a.2) shows that the second term of g′a in (a.3) exists only when
a > 2. Therefore, g′a is continuous for a ∈ (2,∞). Now, we find a > 2 such that g′a is not differentiable at 0.
With the definition of differentiability, we have that g′a is not differentiable at 0 if

lim
x→0

g′a(x)− g′a(0)

x
= lim

x→0

axa−1 sin
(
1
x

)
− xa−2 cos

(
1
x

)
x

= lim
x→0

[
axa−2 sin

( 1

x

)
− xa−3 cos

( 1

x

)
︸ ︷︷ ︸

(∗)

]

does not exist. A similar argument as above shows that the limit exists for a > 3, so ga is only continuously
differentiable when a ∈ (2, 3].
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(c) ga is differentiable on R and g′a is differentiable on R, but such that g′′a is not continuous at zero.

It is shown at the end of part (b) that g′a is differentiale at 0 when a > 3. Because ga is twice (actually
infinitely) differentiable on R \ {0}, we have that g′a is differentiable on R when a ∈ (3,∞). A little
computation then yields

g′′a(x) = a(a− 1)xa−2 sin
( 1

x

)
− (2a− 2)xa−3 cos

( 1

x

)
− xa−4 sin

( 1

x

)
Taking the limit as x→ 0, the first two terms become 0 for a > 3 and the last term does not exists for a ≤ 4
(and is 0 for a > 4). We conclude that a ∈ (3, 4] is what we want.
Note: in the above solution, instead of finding a particular value for a, we find all possible values of a that
satisfy the conditions. However, a particular a with a reasonable justification are suffice for this problem.
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