MAT127B HW Solution 01/08 Chutong Wu

5.2.3

(a) Use Definition 5.2.1 to produce the proper formula for the derivative of h(z) = 1/x.

With Def. 5.2.1, we compute for any ¢ € Dom(h) = R\ {0} that
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which exists for all ¢ € Dom(h). Therefore, we obtain A’ : R\ {0} — R with A/(z) = — 2.
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(b) Combine the result in part (a) with the Chain rule (Theorem 5.2.5) to supply a proof for part (iv)
of Theorem 5.2.4.

Consider f,g: A — R for an interval A C R with f, ¢ differentiable at ¢ € A and g(c) # 0. Consider
the function h as in part (a). We then have
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where the second equality follows from Theorem 5.2.4 (iii), the third equality from the Chain rule and
the fourth equality from part (a).

(¢) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the difference quotient
for (f/g) in a style similar to the proof of Theorem 5.2.3 (iii).

With the same assumption as in Theorem 5.2.4 (iv) (or part (b)), we know f and g are differentiable
(hence continuous) as ¢. Rewriting the difference quotient yields
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Because f is continuous at ¢, as © — ¢, we obtain
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Similarly, becasue g is continous as ¢, we get
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Putting these together yields the result.
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