
MAT 127B
HW 10 Solutions(6.2.3/6.2.5/6.2.13)

Exercise 1 (6.2.3)

For each n ∈ N and x ∈ [0,∞), let

gn(x) =
x

1 + xn
and hn(x) =

{
1, if x ≥ 1

n

nx, if 0 ≤ x < 1
n

Answer the following questions for the sequences (gn) and (hn):

a) Find the pointwise limit on [0,∞).

b) Explain how we know that the convergence cannot be uniform on [0,∞).

c) Choose a smaller set over which the convergence is uniform and supply an argument
to show that this is indeed the case.

Proof.

a) Pointwise limit of gn.

• If 0 ≤ x < 1,

lim
n→∞

xn = 0 =⇒ lim
n→∞

gn(x) = lim
n→∞

x

1 + xn
= x.

• If x = 1

lim
n→∞

1n = 1 =⇒ lim
n→∞

gn(x) = lim
n→∞

1

1 + 1n
=

1

2
.

• If x > 1

lim
n→∞

xn =∞ =⇒ lim
n→∞

gn(x) = lim
n→∞

x

1 + xn
= 0.
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Hence let g(x) be the pointwise limit of gn(x)

g(x) =


x, if 0 ≤ x < 1
1
2
, if x = 1

0, if x > 1

Pointwise Convergence of hn(x)

• If x=0

lim
n→∞

hn(x) = lim
n→∞

0 = 0.

• If x > 1,

Since 1
n
−→ 0 as n −→∞.

Hence for x > 1, there exists N ∈ N(depends on x) such that for all n ≥ N,

1

n
≤ x.

Hence
lim
n→∞

hn(x) = lim
n→∞;n≥N

hn(x) = lim
n→∞;n≥N

1 = 1

Hence let h(x) be the pointwise limit of hn(x)

h(x) =

{
0, if x = 0

1, if x > 0
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b) We know by a Theorem that if fn(x) be a sequence of continuous functions defined on
A ⊂ R which converges uniformly to a function f(x), then f(x) is continuous in A.

We see that A = [0,∞), and gn are continuous functions in A. If the sequence gn
converges uniformly to g, then the function g(x) should be continuous in [0∞).

Since that is not the case, hence the convergence is not uniform.

Similarly for hn(x).

We see that A = [0,∞), and hn are continuous functions in A.

This is because

lim
x→ 1

n

+
hn(x) = lim

x→ 1
n

+
1 = 1

lim
x→ 1

n

−
hn(x) = lim

x→ 1
n

+
nx = n

1

n
= 1.

If the sequence hn converges uniformly to h, then the function h(x) should be contin-
uous in [0,∞).

Since that is not the case, hence the convergence is not uniform.

c) Let us choose the interval,

A =

[
0,

1

2

]
.

Given ε > 0, choose N ∈ N such that

N > max

{
− ln(ε)

ln 2
, 1

}
.

Let n ≥ N.

For any x ∈ [0, 1
2
]

|gn(x)− g(x)| =
∣∣∣∣ x

1 + xn
− x
∣∣∣∣ =

∣∣∣∣ xn+1

1 + xn

∣∣∣∣.
Since x ≥ 0,
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Hence

1 + xn ≥ 1 =⇒ 1

1 + xn
≤ 1 and xn+1 ≤ 1

2n+1

=⇒
∣∣∣∣ xn+1

1 + xn

∣∣∣∣ ≤ 1

2n+1
.

Now, for the choice of n,

n ≥ N >
− ln(ε)

ln 2

=⇒ 2n+1 > 2n >
1

ε

=⇒ 1

2n+1
< ε.

Hence we have,
|gn(x)− g(x)| < ε.

for any n ≥ N and for any x ∈
[
0, 1

2

]
.

Hence in A = [0, 1
2
], gn(x) converges uniformly to g(x).

For hn(x) choose
A = [2, 3].

Since n ≥ 1, hence for x ∈ [2, 3], hn(x) = 1 for every x ∈ [0, 1].

Given ε > 0, choose N = 1 ∈ N, such that for any n ≥ N,

|hn(x)− h(x)| = 0 < ε

for any x ∈ [2, 3]

Hence in A = [2, 3], hn(x) converges uniformly to h(x).
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Exercise 2 (6.2.5)

Using the Cauchy Criterion for convergent sequences of real numbers, supply a proof for
Theorem 6.2,5 (First, define a candidate for f(x), and then argue that fn −→ f uniformly.)

Proof.

Theorem 6.2.5

A sequence of functions (fn) defined on a set A ⊂ R converges uniformly on A if and only
if for every ε > 0 there exists an N ∈ N such that |fn(x) − fm(x)| < ε whenever m,n ≥ N
and x ∈ A.

=>

Let (fn) be a sequence of functions which converge uniformly on A to f(say).

Given ε > 0,
there exists N ′ ∈ N such that

|fn(x)− f(x)| < ε

2

for n ≥ N and for all x ∈ A.

Choose N = N ′ ∈ N.
For n,m ≥ N, and for all x ∈ A we have

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < ε

2
+
ε

2
= ε.

<=
Let for every ε > 0, there exists N ∈ N such that |fn(x) − fm(x)| < ε whenever m,n ≥ N
and x ∈ A.

Given ε > 0,
there exists N ∈ N such that for every x ∈ A and for any m,n ≥ N, |fn(x)− fm(x)| < ε.
Let x ∈ A be any element.
Consider the sequence {fn(x)} ⊂ R.
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Since we know that the sequence {fn(x)} is a Cauchy sequence for every x ∈ A in R, hence
we know that this sequence converges to a real number. We define,

f(x) = lim
n→∞

fn(x).

for every x ∈ A.

We will show that fn converges uniformly to f .

Given ε > 0,
choose the N ∈ N such that |fn(x)− fm(x)| < ε

2

for every n,m ≥ N and for every x ∈ A. [From the assumption]

We will show,
|fn(x)− f(x)| < ε

for all n ≥ N and for every x ∈ A.

Let x ∈ A be any element.
Since the sequence fn(x) converges to f(x), hence given the ε > 0, choose Nx ∈ N(may
depend on x) such that |fm(x)− f(x)| < ε

2
. for all m ≥ Nx.

Let n ≥ N.
Choose m > max{N,Nx}.
Then

|fn(x)− f(x)| < |fn(x)− fm(x)|+ |fm(x)− f(x)| < ε

2
+
ε

2
= ε.

Given ε > 0, there exists an N ∈ N such that for any n ≥ N and for any x ∈ A, we have

|fn(x)− f(x)| < ε.

This proves that fn converges uniformly to f on A.

Exercise 3 (6.2.13)

Recall that the Bolzano–Weierstrass Theorem (Theorem 2.5.5) states that every bounded
sequence of real numbers has a convergent subsequence. An analogous statement for bounded
sequences of functions is not true in general, but under stronger hypotheses several different

6



conclusions are possible. One avenue is to assume the common domain for all of the functions
in the sequence is countable. (Another is explored in the next two exercises.)
Let A = x1, x2, x3, . . . be a countable set. For each n ∈ N , let fn be defined on A and assume
there exists an M > 0 such that |fn(x)| ≤ M for all n ∈ N and x ∈ A. Follow these steps
to show that there exists a subsequence of (fn) that converges pointwise on A.

a) Why does the sequence of real numbers fn(x1) necessarily contain a convergent sub-
sequence (fnk

)? To indicate that the subsequence of functions (fnk
) is generated by

considering the values of the functions at x1, we will use the notation fnk
= f1,k.

b) Now, explain why the sequence f1,k(x2) contains a convergent subsequence.

c) Carefully construct a nested family of subsequences (fm,k), and show how this can be
used to produce a single subsequence of (fn) that converges at every point of A.

Proof.

a) Consider the sequence
{fn(x1)}n∈N.

We know by Bolzano-Weierstrass Theorem states that every bounded sequence of real
numbers has a convergent subsequence.

|fn(x1)| ≤ M for every n ∈ N implies that there is a convergent subsequence in
{fn(x1)}.
Let {fnk

(x1)}k∈N be the subsequence which converges. We call fnk
= f1,k.

{f1,k}k∈N such that f1,k(x1) is a convergent sequence.

b) Consider the sequence in R,
{f1,k(x2)}.

Since |f1,k(x2)| ≤ M is a bounded sequence implies there is a convergent subsequence
in R, call it f2,k(x2).

We have

{fn} ⊃ {f1,k} ⊃ {f2,k} such that {f2,k(x2)}, {f1,k(x1)} converges in R.

c) We will continue the process. After we obtain {fi,k} such that fi,k(xi) converges, we
consider the sequence {fi,k(xi+1)}.
Since |fi,k(xi+1)| ≤ M is a bounded sequence in R, hence there exists a convergent
subsequence {fi+1,k(xi+1)}.
Hence we obtain
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{fn} ⊃ {f1,k} ⊃ {f2,k} ⊃ · · · ⊃ {fi,k} ⊃ {fi+1,k} ⊃ . . . such that {fj,k(xj)} converges.

Consider the subsequence

{gn} = {f1,1, f2,1, f2,2, f3,1, f3,2, f3,3, f4,1 . . . }.

OR

{gn} = {fi,j|i ≥ j}

with dictionary order.

If,

fi,j = gk and fi′.j′ = gk′ then

k < k′ if (i, j) < (i′, j′) in dictionary order.

Need to show that the sequence {gn} converges pointwise on A.

Let xi be any point on A.

Consider the sequence {fi,k(xi)}.
We know that this sequence {fi(xi)} converges hence every subsequence of it.

{gn} = {f1,1, f2,1 . . . fi−1,i−1, fi,1, fi,2, . . . fi,i, fi+1,1 . . . }

Since we have the nested family of subsequence, hence {fj,k} ⊂ {fi,k} for every j ≥ i,
hence the sequence

{fi,1, fi,2, . . . fi,i, fi+1,1 . . . fj,t . . . } ⊂ {gn}; i ≤ j; t ≤ j

is a subsequence {fi,k}, and we know fi,k(xi) converges

hence

{fi,1(xi), fi,2(xi), . . . fi,i(xi), fi+1,1(xi) . . . fj,t(xi)} . . . } ⊂ {fi,k(xi); i ≤ j; t ≤ j

converges.
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Hence
lim
n→∞

gn(xi) = lim
l→∞;k≤l

fl,k(xi) = lim
l→∞;k≤l;l≥i

fl,k(xi)

which is exactly the limit of the sequence

{fi,1(xi), fi,2(xi), . . . fi,i(xi), fi+1,1(xi) . . . fj,t(xi)} . . . } ⊂ {fi,k(xi); i ≤ j; t ≤ j

which converges.

This implies

{gn(xi)} converges and since xi was an arbitrary element of A, hence the subsequence
{gn} ⊂ {fn} converges pointwise on A.
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