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6.2.6 Assume fn → f on a set A. Theorem 6.2.6 is an example of a typical type of question which asks
whether a trait possessed by each fn is inherited by the limit function. Provide an example to show
that all of the following propositions are false if the convergence is only assumed to be pointwise on A.
Then go back and decide which are true under the stronger hypothesis of uniform convergence.

(a) If each fn is uniformly continuous, then f is uniformly continuous.

Consider fn(x) = xn on [0, 1]. We know each fn is uniformly continuous because

|xn − yn| ≤ |x− y|
∣∣∣∣ n−1∑
i=0

xiy(n−1)−i
∣∣∣∣︸ ︷︷ ︸

≤n

≤ n|x− y|

However, the pointwise limit of fn is f(x) = 0 for x ∈ [0, 1) and f(x) = 1 for x = 1, and f is not uniform
continuous because f is not continuous.

Now, assume fn → f uniformly on A and fn uniformly continuous for all n ∈ N. Then for any ε > 0,
there exists Nε ∈ N such that for all x ∈ A, |fn(x) − f(x)| < ε for n > Nε. Also, because fn is uniformly
continuous, we know for any ε > 0, there exists δε > 0 such that |x−y| < δε ⇒ |fn(x)−fn(y)| < ε. Therefore,
for each ε > 0, pick Nε and δε as above and we get for all n > Nε and |x− y| < δε that

|f(x)− f(y)| = |f(x)− fn(x) + fn(x)− fn(y) + fn(y)− f(y)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
< 3ε

so f(x) is uniformly continuous. �

(b) If each fn is bounded, then f is bounded.

Consider fn(x) as in Exercise 6.2.1 in Abbott with A = (0, 1). We have fn is bounded because nx < n
for x ∈ (0, 1) and nx2 > 0. But its pointwise limit f = 1

x is unbounded on (0, 1).
For the proof of the uniform convergent case, see Theorem 9.14 in Hunter’s notes.

(c) If each fn has finite number of discontinuities, then f has a finite number of discontinuities.

The sequence of functions gn(x) in part (b) of Exercise 6.2.2 in Abbott is a counterexample for both
cases.

(d) If each fn has fewer than M discontinuities (where M ∈ N is fixed), then f has fewer than M
discontinuities.

Consider the sequence of functions on [0, 1] with

fn(x) =

{
1 if x = 1

M , 2
M , · · · , M−1M

xn otherwise

where each fn has M − 1 discontinuities. However, we have its limit function

f(x) =

{
1 if x = 1

M , 2
M , · · · , M−1M , 1

0 otherwise

has M discontinuities.
Now, assume fn → f uniformly. Fsc assume each fn has fewer than M discontinuities but f has M

discontinuities (other cases can be reduced to this one). We will show that infinite many fn must also have
M discontinuities, contradicting our assumption.

Denote the M discontinuities of f by x1, x2, · · · , xM . We then have for any δ > 0 that there exist
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x′i ∈ Vδ(xi) \ {xi} and εi > 0 such that |f(x′i) − f(xi)| ≥ εi, for i = 1, 2, · · · ,M . For simplicity set
ε := min{ε1, · · · , εM}. Because fn → f uniformly, for ε

4 > 0 there exists N ε
4
∈ N such that for all n > N ε

4
we

have |fn(xi)− f(xi)| < ε
4 and |fn(x′i)− f(x′i)| < ε

4 where i = 1, · · · ,M . Putting these together we obtain for
all any δ > 0, there exists ε

4 > 0, N ε
4
∈ N and x′i in the deleted δ-nbhd of xi such that |fn(x′i)− fn(xi)| ≥ ε

4
for i = 1, · · · ,M . This completes the proof. �

Note: for the uniform convergent case, simply arguing with the Continuous Limit Theorem (Thm 6.2.6)
is not enough, because fn’s might have discontinuities at different x’s.

(e) If each fn has at most a countable number of discontinuities, then f has at most a countable
number of discontinuities.

Consider the sequence of functions on [0, 1] with

fn(x) =

{
1 if x = i

m with i = 1, · · · ,m and m = 1, · · · , n
0 otherwise

Then each fn has at most n2+n
2 discontinuities. However, as n → ∞, we know for each irrational number

r ∈ R\Q, there exists a sequence of rational numbers {xk} ⊆ Q with fn(xk) = 1 for all k ∈ N and xk → r as
k →∞. This means that as n→∞, fn has discontinuities at every irrational number between [0, 1], which
is uncountable.

We can modify the above fn so that it converges uniformly. Consider the sequence of functions on [0, 1]

fn(x) =

{
1
q if x = p

q with p, q ∈ N, gcd(p, q) = 1, and q ≤ n
0 otherwise

Then fn converge uniformly to

f(x) =

{
1
q if x = p

q with p, q ∈ N, gcd(p, q) = 1, and q ∈ N
0 otherwise

with a similar argument as in Exercise 6.2.2(b) from HW 9.

6.2.7 Let f be uniformly continuous on all of R, and define a sequence of functions by fn(x) = f(x+ 1
n ).

Show that fn → f uniformly. Give an example to show that this proposition fails if is only assumed to
be continuous and not uniformly continuous on R.

Fix ε > 0. The uniform continuity of f implies that there exists δ > 0 such that for < |x − y| < δ ⇒
|f(x)− f(y)| < ε. We pick N ∈ N such that 1

N > δ. Then we have for all n > N and all x ∈ R that

|x+
1

n
− x| = 1

n
<

1

N
< δ ⇒ |fn(x)− f(x)| = |f(x+

1

n
)− f(x)| < ε

Hence, fn → f uniformly.
To show this proposition fails if f is continuous but not uniformly continuous on R, consider f(x) = x2

on [0, 1]. Then we have |fn(x)− f(x)| = |(x+ 1
n )2 − x2| = 2x

n + 1
n2 . For each n ∈ N, pick x = n and ε = 1

2
then we get |fn(n)− f(n)| ≥ 1 > ε, so the proposition fails. �

6.2.10 This exercise and the next explore partial converses of the Continuous Limit Theorem (Theorem
6.2.6). Assume fn → f pointwise on [a, b] and the limit function f is continuous on [a, b]. If each fn is
increasing (but not necessarily continuous), show fn → f uniformly.

First note that the set [a, b] is compact on R. This means that every open cover of [a, b] has a finite
subcover. In addition, because f is continuous on [a, b], f is uniformly continuous on [a, b]. Fix ε > 0
and we can pick δ > 0 such that 0 < |x − y| < δ ⇒ |f(x) − f(y)| < ε

2 . Moreover, we can show that
because fn → f to f pointwise, each fn is increasing, and f is continuous that f must also be increasing.
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Consider the finite cover of [a, b] with radius δ centered around {xi}ki=1 ⊆ [a, b] for some k ∈ N. We know
for the above ε > 0 there exists N1, · · · , Nk such that |fn(x) − f(x)| < ε

2 for all x ∈ [a, b] and all n > Ni,
i = 1, · · · , N , respectively. Choose N := min{N1, · · · , Nk}. We then have for all n > N and for all x ∈ [a, b]
that x ∈ [xi, xi+1] for some i = 1, · · · , N − 1. Consider the two cases fn(x) > f(x) and fn(x) < f(x), we
have for the first case that

f(xi) < f(x) < fn(x) < fn(xi+1) < f(xi+1) +
ε

2
< f(xi) +

ε

2
+
ε

2

and for the second case that

f(xi)−
ε

2
< fn(xi) < fn(x) < f(x) < f(xi+1) < f(xi) +

ε

2

This means that for all n > N and x ∈ [a, b],

|fn(xi+1)− fn(x)| < f(xi)− f(xi) < ε

so fn → f uniformly. �
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