6.2.6 Assume $f_n \to f$ on a set A. Theorem 6.2.6 is an example of a typical type of question which asks whether a trait possessed by each f_n is inherited by the limit function. Provide an example to show that *all* of the following propositions are false if the convergence is only assumed to be pointwise on A. Then go back and decide which are true under the stronger hypothesis of uniform convergence.

(a) If each f_n is uniformly continuous, then f is uniformly continuous.

Consider $f_n(x) = x^n$ on [0, 1]. We know each f_n is uniformly continuous because

$$|x^{n} - y^{n}| \le |x - y| \underbrace{\left| \sum_{i=0}^{n-1} x^{i} y^{(n-1)-i} \right|}_{\le n} \le n|x - y|$$

However, the pointwise limit of f_n is f(x) = 0 for $x \in [0,1)$ and f(x) = 1 for x = 1, and f is not uniform continuous because f is not continuous.

Now, assume $f_n \to f$ uniformly on A and f_n uniformly continuous for all $n \in \mathbb{N}$. Then for any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that for all $x \in A$, $|f_n(x) - f(x)| < \epsilon$ for $n > N_{\epsilon}$. Also, because f_n is uniformly continuous, we know for any $\epsilon > 0$, there exists $\delta_{\epsilon} > 0$ such that $|x - y| < \delta_{\epsilon} \Rightarrow |f_n(x) - f_n(y)| < \epsilon$. Therefore, for each $\epsilon > 0$, pick N_{ϵ} and δ_{ϵ} as above and we get for all $n > N_{\epsilon}$ and $|x - y| < \delta_{\epsilon}$ that

$$|f(x) - f(y)| = |f(x) - f_n(x) + f_n(x) - f_n(y) + f_n(y) - f(y)|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$$

$$< 3\epsilon$$

so f(x) is uniformly continuous.

(b) If each f_n is bounded, then f is bounded.

Consider $f_n(x)$ as in Exercise 6.2.1 in Abbott with A = (0, 1). We have f_n is bounded because nx < n for $x \in (0, 1)$ and $nx^2 > 0$. But its pointwise limit $f = \frac{1}{x}$ is unbounded on (0, 1).

For the proof of the uniform convergent case, see Theorem 9.14 in Hunter's notes.

(c) If each f_n has finite number of discontinuities, then f has a finite number of discontinuities.

The sequence of functions $g_n(x)$ in part (b) of Exercise 6.2.2 in Abbott is a counterexample for both cases.

(d) If each f_n has fewer than M discontinuities (where $M \in \mathbb{N}$ is fixed), then f has fewer than M discontinuities.

Consider the sequence of functions on [0, 1] with

$$f_n(x) = \begin{cases} 1 & \text{if } x = \frac{1}{M}, \frac{2}{M}, \cdots, \frac{M-1}{M} \\ x^n & \text{otherwise} \end{cases}$$

where each f_n has M-1 discontinuities. However, we have its limit function

$$f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{M}, \frac{2}{M}, \cdots, \frac{M-1}{M}, 1\\ 0 & \text{otherwise} \end{cases}$$

has M discontinuities.

Now, assume $f_n \to f$ uniformly. Fsc assume each f_n has fewer than M discontinuities but f has M discontinuities (other cases can be reduced to this one). We will show that infinite many f_n must also have M discontinuities, contradicting our assumption.

Denote the M discontinuities of f by x_1, x_2, \dots, x_M . We then have for any $\delta > 0$ that there exist

 $x'_i \in V_{\delta}(x_i) \setminus \{x_i\}$ and $\epsilon_i > 0$ such that $|f(x'_i) - f(x_i)| \ge \epsilon_i$, for $i = 1, 2, \dots, M$. For simplicity set $\epsilon := \min\{\epsilon_1, \dots, \epsilon_M\}$. Because $f_n \to f$ uniformly, for $\frac{\epsilon}{4} > 0$ there exists $N_{\frac{\epsilon}{4}} \in \mathbb{N}$ such that for all $n > N_{\frac{\epsilon}{4}}$ we have $|f_n(x_i) - f(x_i)| < \frac{\epsilon}{4}$ and $|f_n(x'_i) - f(x'_i)| < \frac{\epsilon}{4}$ where $i = 1, \dots, M$. Putting these together we obtain for all any $\delta > 0$, there exists $\frac{\epsilon}{4} > 0$, $N_{\frac{\epsilon}{4}} \in \mathbb{N}$ and x'_i in the deleted δ -nbhd of x_i such that $|f_n(x'_i) - f_n(x_i)| \ge \frac{\epsilon}{4}$ for $i = 1, \dots, M$. This completes the proof.

Note: for the uniform convergent case, simply arguing with the Continuous Limit Theorem (Thm 6.2.6) is not enough, because f_n 's might have discontinuities at different x's.

(e) If each f_n has at most a countable number of discontinuities, then f has at most a countable number of discontinuities.

Consider the sequence of functions on [0, 1] with

$$f_n(x) = \begin{cases} 1 & \text{if } x = \frac{i}{m} \text{ with } i = 1, \cdots, m \text{ and } m = 1, \cdots, n \\ 0 & \text{otherwise} \end{cases}$$

Then each f_n has at most $\frac{n^2+n}{2}$ discontinuities. However, as $n \to \infty$, we know for each irrational number $r \in \mathbb{R} \setminus \mathbb{Q}$, there exists a sequence of rational numbers $\{x_k\} \subseteq \mathbb{Q}$ with $f_n(x_k) = 1$ for all $k \in \mathbb{N}$ and $x_k \to r$ as $k \to \infty$. This means that as $n \to \infty$, f_n has discontinuities at every irrational number between [0, 1], which is uncountable.

We can modify the above f_n so that it converges uniformly. Consider the sequence of functions on [0, 1]

$$f_n(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ with } p, q \in \mathbb{N}, \ \gcd(p, q) = 1, \text{ and } q \le n \\ 0 & \text{otherwise} \end{cases}$$

Then f_n converge uniformly to

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ with } p, q \in \mathbb{N}, \ \gcd(p, q) = 1, \text{ and } q \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

with a similar argument as in Exercise 6.2.2(b) from HW 9.

6.2.7 Let f be uniformly continuous on all of \mathbb{R} , and define a sequence of functions by $f_n(x) = f(x + \frac{1}{n})$. Show that $f_n \to f$ uniformly. Give an example to show that this proposition fails if is only assumed to be continuous and not uniformly continuous on \mathbb{R} .

Fix $\epsilon > 0$. The uniform continuity of f implies that there exists $\delta > 0$ such that for $\langle |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$. We pick $N \in \mathbb{N}$ such that $\frac{1}{N} > \delta$. Then we have for all n > N and all $x \in \mathbb{R}$ that

$$|x + \frac{1}{n} - x| = \frac{1}{n} < \frac{1}{N} < \delta \quad \Rightarrow \quad |f_n(x) - f(x)| = |f(x + \frac{1}{n}) - f(x)| < \epsilon$$

Hence, $f_n \to f$ uniformly.

To show this proposition fails if f is continuous but not uniformly continuous on \mathbb{R} , consider $f(x) = x^2$ on [0, 1]. Then we have $|f_n(x) - f(x)| = |(x + \frac{1}{n})^2 - x^2| = \frac{2x}{n} + \frac{1}{n^2}$. For each $n \in \mathbb{N}$, pick x = n and $\epsilon = \frac{1}{2}$ then we get $|f_n(n) - f(n)| \ge 1 > \epsilon$, so the proposition fails.

6.2.10 This exercise and the next explore partial converses of the Continuous Limit Theorem (Theorem 6.2.6). Assume $f_n \to f$ pointwise on [a, b] and the limit function f is continuous on [a, b]. If each f_n is increasing (but not necessarily continuous), show $f_n \to f$ uniformly.

First note that the set [a, b] is compact on \mathbb{R} . This means that every open cover of [a, b] has a finite subcover. In addition, because f is continuous on [a, b], f is uniformly continuous on [a, b]. Fix $\epsilon > 0$ and we can pick $\delta > 0$ such that $0 < |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\epsilon}{2}$. Moreover, we can show that because $f_n \to f$ to f pointwise, each f_n is increasing, and f is continuous that f must also be increasing. Consider the finite cover of [a, b] with radius δ centered around $\{x_i\}_{i=1}^k \subseteq [a, b]$ for some $k \in \mathbb{N}$. We know for the above $\epsilon > 0$ there exists N_1, \dots, N_k such that $|f_n(x) - f(x)| < \frac{\epsilon}{2}$ for all $x \in [a, b]$ and all $n > N_i$, $i = 1, \dots, N$, respectively. Choose $N := \min\{N_1, \dots, N_k\}$. We then have for all n > N and for all $x \in [a, b]$ that $x \in [x_i, x_{i+1}]$ for some $i = 1, \dots, N-1$. Consider the two cases $f_n(x) > f(x)$ and $f_n(x) < f(x)$, we have for the first case that

$$f(x_i) < f(x) < f_n(x) < f_n(x_{i+1}) < f(x_{i+1}) + \frac{\epsilon}{2} < f(x_i) + \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

and for the second case that

$$f(x_i) - \frac{\epsilon}{2} < f_n(x_i) < f_n(x) < f(x) < f(x_{i+1}) < f(x_i) + \frac{\epsilon}{2}$$

This means that for all n > N and $x \in [a, b]$,

$$|f_n(x_{i+1}) - f_n(x)| < f(x_i) - f(x_i) < \epsilon$$

so $f_n \to f$ uniformly.