MAT 127B HW 12 Solutions(6.3.2/6.3.4/6.3.6/6.3.7)

Exercise 1 (6.3.2)

Consider the sequence of functions

$$h_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

- a) Compute the pointwise limit of (h_n) and then prove that the convergence is uniform on \mathbb{R} .
- b) Note that each h_n is differentiable. Show $g(x) = \lim h'_n(x)$ exists for all x, and explain how we can be certain that the convergence is not uniform on any neighborhood of zero.

Proof.

a)

$$\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} \sqrt{x^2 + \frac{1}{n}} = \sqrt{x^2} = |x|$$

Hence the pointwise limit of $\{h_n(x)\}$: h(x) = |x|.

Given $\epsilon > 0$, we need to exibit a $N \in \mathbb{N}$ such that for all $n \ge N$ and for all $x \in \mathbb{R}$,

$$|h_n(x) - h(x)| = \left|\sqrt{x^2 + \frac{1}{n}} - \sqrt{x^2}\right| < \epsilon.$$

Given $\epsilon > 0$,

choose $N \in \mathbb{N}$, such that

$$N > \frac{1}{\epsilon^2}.$$

Let $n \ge N$ and let $x \in \mathbb{R}$. implies

$$\sqrt{\frac{1}{n}} \le \sqrt{\frac{1}{N}} < \epsilon.$$
$$2\sqrt{\frac{x^2}{n}} \ge 0.$$

Consider

$$x^{2} + \frac{1}{n} \le x^{2} + \frac{1}{n} + 2\sqrt{\frac{x^{2}}{n}} = \left(\sqrt{x^{2}} + \sqrt{\frac{1}{n}}\right)^{2}$$
$$\implies \sqrt{x^{2} + \frac{1}{n}} \le \sqrt{x^{2}} + \sqrt{\frac{1}{n}}$$
$$\left|\sqrt{x^{2} + \frac{1}{n}} - \sqrt{x^{2}}\right| \le \sqrt{\frac{1}{n}} \le \sqrt{\frac{1}{N}} < \epsilon.$$

Hence, $h_n(x)$ converges to h(x) uniformly.

b) Each h_n is differentiable since

$$h'_n(x) = \lim_{h \to 0} \frac{h_n(x+h) - h_n(x)}{h} = \frac{x}{(\sqrt{x^2 + \frac{1}{n}})}$$

exists for $x \in \mathbb{R}$.

$$g(x; x \neq 0) = \lim_{n \to \infty} h'_n(x) = \lim_{n \to \infty} \frac{x}{\sqrt{x^2 + \frac{1}{n}}} = \frac{x}{|x|}$$

exists for $x \neq 0$.

For x = 0,

$$g(0) = \lim_{n \to \infty} h'_n(0) = \lim_{n \to \infty} \frac{0}{\sqrt{0 + \frac{1}{n}}} = 0.$$

Note that for each $n, h'_n(x)$ is continuous at x = 0.

Now, $\lim_{n\to\infty} h'_n(x) = g(x)$. ALso g(x) is not continuous at x = 0.

If $h'_n(x) \longrightarrow g(x)$ is uniform in any interval containing 0 and also given each $h'_n(x)$ is continuous at 0, implies g(x) should be continuous at x = 0, which is not the case. Hence the convergence is not uniform

Hence the convergence is not uniform.

Exercise 2 (6.3.4)

Let

$$h_n(x) = \frac{\sin(nx)}{\sqrt{n}}.$$

Show that $h_n \longrightarrow 0$ uniformly on \mathbb{R} but that the sequence of derivatives (h'_n) diverges for every $x \in \mathbb{R}$.

Proof. Given $\epsilon > 0$, Choose $N \in \mathbb{N}$ such that

$$N > \frac{1}{\epsilon^2}.$$

For any $n \geq N$, and for any $x \in \mathbb{R}$,

$$\frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}} < \epsilon.$$

Hence

$$|h_n(x) - 0| = \left|\frac{\sin(nx)}{\sqrt{n}}\right| \le \frac{1}{\sqrt{n}} < \epsilon.$$

Hence $h_n \longrightarrow 0$ converges uniformly.

$$h'_n(x) = \sqrt{n}\cos(nx).$$

Let $x = \pi x'$. Either x' is rational or irrational.

If $x' = \frac{p}{q}$, q > 0 then consider the subsequence $n = \{2q, 4q, 6q, \dots, 2kq, \dots\}$. Hence we have the subsequence

$$\{\sqrt{2kq}\cos(pk2\pi n)\} = \sqrt{2kq} \longrightarrow \infty$$

Say x' is irrational. Consider the set

$$\{n\pi x'(mod2\pi)\}_n \subset [0, 2\pi].$$

Every element of this set is distinct since otherwise for $n_1 \neq n_2$:

$$n_1 \pi x' - n_2 \pi x' = 2k\pi \implies x' = \frac{2k}{n_1 - n_2}$$

which implies x' is rational.

We have a sequence in a compact set $[0, 2\pi]$ which implies there is a convergent subsequence. Consider the subsequence $\{n_k\pi x'(mod2\pi)\}$ which converges. If the sequence converges to $\pi/2$ or $3\pi/2$, then consider the sequence,

$$\{2n_k\pi x'(mod2\pi)\}\longrightarrow \pi.$$

Since $\cos x$ is a continuous function, hence say

$$\{n_k \pi x' (mod 2\pi)\} \longrightarrow y,$$

with $\cos y \neq 0$. Choose ϵ such that, $|\cos y| > \epsilon > 0$, This implies there exists a $\delta > 0$, such that whenever

$$|x - y| < \delta \implies |\cos x - \cos y| < \epsilon \implies \cos y - \epsilon < \cos y + \epsilon.$$

Given δ , there exists $N \in \mathbb{N}$, such that for all $k \ge N$,

$$|n_k \pi x'(mod2\pi) - y| < \delta.$$

If $\cos y > 0$ (similarly for $\cos y < 0$) then we have for all $k \ge N$

$$0 < \cos y - \epsilon < \cos(n_k \pi x') \ (\cos(n_k \pi x') < \cos y + \epsilon < 0)$$

Hence,

consider the subsequence for $k \ge N$,

if
$$(\cos y > 0)$$
 $\lim_{k \to \infty} h_{n_k} = \lim_{k \to \infty} \sqrt{n_k} \cos(n_k \pi x') > \lim_{k \to \infty} \sqrt{n_k} (\cos(y) - \epsilon) = \infty$

OR

if $(\cos y < 0)$ $\lim_{k \to \infty} h_{n_k} = \lim_{k \to \infty} \sqrt{n_k} \cos(n_k \pi x') < \lim_{k \to \infty} \sqrt{n_k} (\cos(y) + \epsilon) = -\infty$ Hence the sequence $\{h_n(x)\}$ diverges for every x.

Exercise 3 (6.3.6)

Provide an example or explain why the request is impossible. Let's take the domain of the functions to be all of R.

- a) A sequence (f_n) of nowhere differentiable functions with $f_n \longrightarrow f$ uniformly and f everywhere differentiable.
- b) A sequence (f_n) of differentiable functions such that (f'_n) converges uniformly but the original sequence (f_n) does not converge for any $x \in \mathbb{R}$.
- c) A sequence (f_n) of differentiable functions such that both (f_n) and (f'_n) converge uniformly but $f = \lim f_n$ is not differentiable at some point.

Proof.

a) Let

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x),$$

where h(x) = |x| on [-1, 1] and extended to \mathbb{R} by h(x+2) = h(x). This is a continuous, nowhere differentiable function. Also note that $0 \le |g(x)| \le 2$ hence is bounded.

Consider

$$f_n(x) = \frac{1}{n}g(x).$$

 $f_n(x)$ converges to f(x) = 0 uniformly, since taken $\epsilon > 0$, there exists $N > \frac{2}{\epsilon}$, $N \in \mathbb{N}$ such that for any $n \ge N$, and for any $x \in \mathbb{R}$

$$|f_n(x) - 0| \le \frac{1}{n} |g(x)| \le \frac{2}{n} \le \frac{2}{N} < \epsilon.$$

 f_n is nowhere differentiable for every $n \in \mathbb{N}$,

but f(x) = 0 and hence is differentiable everywhere.

b)

$$f_n(x) = x + n$$

is a sequence of differentiable functions.

 $f_n'(x) = 1$

which converges uniformly to f(x) = 1.

$$f_n(x) = x + n$$

does not converge for any $x \in \mathbb{R}$.

c) This request is not possible.

Let $f = \lim f_n$ be not differentiable at a point x_0 .

Consider the closed interval, $[x_0 - 1, x_0 + 1]$.

 f_n uniformly converges to f and f'_n uniformly converges to say g on $[x_0 - 1, x_0 + 1]$.

Then we know f is differentiable and f' = g, contradicting the fact that f is not differentiable at x_0 .

Exercise 4 (6.3.7)

Theorem 6.3.2

Let (f_n) be a sequence of differentiable functions defined on the closed interval [a, b], and assume (f'_n) converges uniformly on [a, b]. If there exists a point $x_0 \in [a, b]$ where $f_n(x_0)$ is convergent, then (f_n) converges uniformly on [a, b].

Use the Mean Value Theorem to supply a proof for Theorem 6.3.2. To get started, observe that the triangle inequality implies that, for any $x \in [a, b]$ and $m, n \in \mathbb{N}$,

$$|f_n(x) - f_m(x)| \le |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|.$$

Proof.

To prove that (f_n) converges uniformly on [a, b], we will prove the equivalent statement, that (f_n) satisfies the Cauchy Criterion.

Given $\epsilon > 0$, we will exibit an $N \in \mathbb{N}$ such that

$$|f_m(x) - f_n(x)| < \epsilon$$

for all $n, m \ge N$ and for all $x \in [a, b]$.

Since $f'_n s$ are differentiable functions hence are continuous. For any two $n, m \in \mathbb{N}$, $(f_n - f_m)$ is also a differentiable function on [a, b], hence we have by Mean value Theorem,

$$|(f_n - f_m)(x) - (f_n - f_m)(x_0)| \le |(f_n - f_m)'(\theta)| |x - x_0| \le |f'_n(\theta) - f'_m(\theta)| |b - a|$$

Since (f'_n) uniformly converges hence by Cauchy Criterion, there exists an $N_1 \in \mathbb{N}$ such that for all $n, m \geq N_1$

$$|f'_n(\theta) - f'_m(\theta)| < \frac{\epsilon}{4(b-a)}.$$

Since $(f_n(x_0))$ converges, hence the sequence is Cauchy hence there exists $N_2 \in \mathbb{N}$, such that for all $n, m \geq N_2$ such that

$$|f_n(x_0) - f_m(x_0)| < \frac{\epsilon}{2}.$$

Take $N = \max N_1, N_2$. For all $n, m \ge N$ and for all $x \in [a, b]$, we have

$$|f_n(x) - f_m(x)| \le |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|$$
$$\le |f'_n(\theta) - f'_m(\theta)||b - a| + |f_n(x_0) - f_m(x_0)|.$$
$$\le \frac{\epsilon}{4(b-a)}(b-a) + \frac{\epsilon}{2} < \epsilon.$$

Hence the sequence (f_n) converges uniformly.