
MAT 127B
HW 12 Solutions(6.3.2/6.3.4/6.3.6/6.3.7)

Exercise 1 (6.3.2)

Consider the sequence of functions

hn(x) =

√
x2 +

1

n

a) Compute the pointwise limit of (hn) and then prove that the convergence is uniform
on R.

b) Note that each hn is differentiable. Show g(x) = limh′n(x) exists for all x, and explain
how we can be certain that the convergence is not uniform on any neighborhood of
zero.

Proof.

a)

lim
n→∞

hn(x) = lim
n→∞

√
x2 +

1

n
=
√
x2 = |x|

Hence the pointwise limit of {hn(x)} :

h(x) = |x|.

Given ε > 0, we need to exibit a N ∈ N such that for all n ≥ N and for all x ∈ R,

|hn(x)− h(x)| =
∣∣∣∣
√
x2 +

1

n
−
√
x2
∣∣∣∣ < ε.

Given ε > 0,
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choose N ∈ N, such that

N >
1

ε2
.

Let n ≥ N and let x ∈ R. implies √
1

n
≤
√

1

N
< ε.

Consider

2

√
x2

n
≥ 0.

Hence

x2 +
1

n
≤ x2 +

1

n
+ 2

√
x2

n
=

(√
x2 +

√
1

n

)2

=⇒
√
x2 +

1

n
≤
√
x2 +

√
1

n∣∣∣∣
√
x2 +

1

n
−
√
x2
∣∣∣∣ ≤

√
1

n
≤
√

1

N
< ε.

Hence, hn(x) converges to h(x) uniformly.

b) Each hn is differentiable since

h′n(x) = lim
h→0

hn(x+ h)− hn(x)

h
=

x

(
√
x2 + 1

n
)

exists for x ∈ R.

g(x;x 6= 0) = lim
n→∞

h′n(x) = lim
n→∞

x√
x2 + 1

n

=
x

|x|

exists for x 6= 0.

For x = 0,

g(0) = lim
n→∞

h′n(0) = lim
n→∞

0√
0 + 1

n

= 0.

Note that for each n, h′n(x) is continuous at x = 0.
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Now, limn→∞ h′n(x) = g(x).

ALso g(x) is not continuous at x = 0.

If h′n(x) −→ g(x) is uniform in any interval containing 0 and also given each h′n(x) is
continuous at 0, implies g(x) should be continuous at x = 0, which is not the case.

Hence the convergence is not uniform.

Exercise 2 (6.3.4)

Let

hn(x) =
sin(nx)√

n
.

Show that hn −→ 0 uniformly on R but that the sequence of derivatives (h′n) diverges for
every x ∈ R.

Proof.
Given ε > 0,
Choose N ∈ N such that

N >
1

ε2
.

For any n ≥ N, and for any x ∈ R,

1√
n
≤ 1√

N
< ε.

Hence

|hn(x)− 0| =
∣∣∣∣sin(nx)√

n

∣∣∣∣ ≤ 1√
n
< ε.

Hence hn −→ 0 converges uniformly.

h′n(x) =
√
n cos(nx).

Let x = πx′.
Either x′ is rational or irrational.

If x′ = p
q
, q > 0 then consider the subsequence

n = {2q, 4q, 6q, . . . , 2kq, . . . }.
Hence we have the subsequence
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{
√

2kq cos(pk2πn)} =
√

2kq −→∞.
Say x′ is irrational.
Consider the set

{nπx′(mod2π)}n ⊂ [0, 2π].

Every element of this set is distinct since otherwise for n1 6= n2:

n1πx
′ − n2πx

′ = 2kπ =⇒ x′ =
2k

n1 − n2

which implies x′ is rational.

We have a sequence in a compact set [0, 2π] which implies there is a convergent subsequence.
Consider the subsequence {nkπx′(mod2π)} which converges. If the sequence converges to
π/2 or 3π/2, then consider the sequence,

{2nkπx′(mod2π)} −→ π.

Since cosx is a continuous function, hence say

{nkπx′(mod2π)} −→ y,

with cos y 6= 0.
Choose ε such that,
| cos y| > ε > 0,
This implies there exists a δ > 0, such that whenever

|x− y| < δ =⇒ | cosx− cos y| < ε =⇒ cos y − ε < cosx < cos y + ε.

Given δ, there exists N ∈ N, such that for all k ≥ N,

|nkπx′(mod2π)− y| < δ.

If cos y > 0 (similarly for cos y < 0)
then we have for all k ≥ N

0 < cos y − ε < cos(nkπx
′) (cos(nkπx

′) < cos y + ε < 0)

Hence,
consider the subsequence for k ≥ N,

if (cos y > 0) lim
k→∞

hnk
= lim

k→∞

√
nk cos(nkπx

′) > lim
k→∞

√
nk(cos(y)− ε) =∞

OR

if (cos y < 0) lim
k→∞

hnk
= lim

k→∞

√
nk cos(nkπx

′) < lim
k→∞

√
nk(cos(y) + ε) = −∞

Hence the sequence {hn(x)} diverges for every x.
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Exercise 3 (6.3.6)

Provide an example or explain why the request is impossible. Let’s take the domain of the
functions to be all of R.

a) A sequence (fn) of nowhere differentiable functions with fn −→ f uniformly and f
everywhere differentiable.

b) A sequence (fn) of differentiable functions such that (f ′
n) converges uniformly but the

original sequence (fn) does not converge for any x ∈ R.

c) A sequence (fn) of differentiable functions such that both (fn) and (f ′
n)converge uni-

formly but f = lim fn is not differentiable at some point.

Proof.

a) Let

g(x) =
∞∑
n=0

1

2n
h(2nx),

where h(x) = |x| on [−1, 1] and extended to R by h(x+ 2) = h(x).

This is a continuous, nowhere differentiable function.

Also note that 0 ≤ |g(x)| ≤ 2 hence is bounded.

Consider

fn(x) =
1

n
g(x).

fn(x) converges to f(x) = 0 uniformly, since taken ε > 0, there exists N > 2
ε
, N ∈ N

such that for any n ≥ N, and for any x ∈ R

|fn(x)− 0| ≤ 1

n
|g(x)| ≤ 2

n
≤ 2

N
< ε.

fn is nowhere differentiable for every n ∈ N,
but f(x) = 0 and hence is differentiable everywhere.

b)
fn(x) = x+ n

is a sequence of differentiable functions.
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f ′
n(x) = 1

which converges uniformly to f(x) = 1.

fn(x) = x+ n

does not converge for any x ∈ R.

c) This request is not possible.

Let f = lim fn be not differentiable at a point x0.

Consider the closed interval, [x0 − 1, x0 + 1].

fn uniformly converges to f and f ′
n uniformly converges to say g on [x0 − 1, x0 + 1].

Then we know f is differentiable and f ′ = g, contradicting the fact that f is not
differentiable at x0.

Exercise 4 (6.3.7)

Theorem 6.3.2

Let (fn) be a sequence of differentiable functions defined on the closed interval [a, b], and
assume (f ′

n) converges uniformly on [a, b]. If there exists a point x0 ∈ [a, b] where fn(x0) is
convergent, then (fn) converges uniformly on [a, b].

Use the Mean Value Theorem to supply a proof for Theorem 6.3.2. To get started, observe
that the triangle inequality implies that, for any x ∈ [a, b] and m,n ∈ N,

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)|.

Proof.
To prove that (fn) converges uniformly on [a, b], we will prove the equivalent statement, that
(fn) satisfies the Cauchy Criterion.

Given ε > 0, we will exibit an N ∈ N such that

|fm(x)− fn(x)| < ε
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for all n,m ≥ N and for all x ∈ [a, b].

Since f ′
ns are differentiable functions hence are continuous. For any two n,m ∈ N, (fn− fm)

is also a differentiable function on [a, b], hence we have by Mean value Theorem,

|(fn − fm)(x)− (fn − fm)(x0)| ≤ |(fn − fm)′(θ)||x− x0| ≤ |f ′
n(θ)− f ′

m(θ)||b− a|

Since (f ′
n) uniformly converges hence by Cauchy Criterion, there exists an N1 ∈ N such that

for all n,m ≥ N1

|f ′
n(θ)− f ′

m(θ)| < ε

4(b− a)
.

Since (fn(x0)) converges, hence the sequence is Cauchy hence there exists N2 ∈ N, such that
for all n,m ≥ N2 such that

|fn(x0)− fm(x0)| <
ε

2
.

Take N = maxN1, N2.
For all n,m ≥ N and for all x ∈ [a, b], we have

|fn(x)− fm(x)| ≤ |(fn(x)− fm(x))− (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)|

≤ |f ′
n(θ)− f ′

m(θ)||b− a|+ |fn(x0)− fm(x0)|.

≤ ε

4(b− a)
(b− a) +

ε

2
< ε.

Hence the sequence (fn) converges uniformly.
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