
MAT127B HW Solution Banach Problems Chutong Wu

Banach Problems Write

D0 = {f ′|f : (a, b)→ R is differentiable}
Bdd(a, b) = {f |f : (a, b)→ R is bounded}
C1[a, b] = {f |[a,b]|f : (c, d)→ R has a continuous derivative}
||f ||sup = sup

x
(|f(x)|) and ||f ||C1 = ||f ||sup + ||f ′||sup

(1) Show that (D0(a, b) ∩Bdd(a, b), || · ||sup) is a Banach space.

We first show that D0(a, b) ∩ Bdd(a, b) is a R-vector space. It is easy to check that Bdd(a, b) is a R-
vector space, and D0(a, b) is a R-vector space following from the linearity of derivatives. Therefore, their
intersection is again a R-vector space.

Next, we show (D0(a, b) ∩ Bdd(a, b), || · ||sup) is a normed vector space w.r.t. the sup-norm. We prove
the three properties in Definition 13.20 in Hunter’s notes. We know the sup-norm of any function is always
greater than 0 by its definition, and it is finite for functions in D0(a, b)∩Bdd(a, b) because the absolute value
of a bounded function is bounded by some real number. Also, we know that for any function f , ||f ||sup = 0
if and only if |f(x)| = 0 for all x ∈ R if and only if f = 0, so this property holds for f ∈ D0(a, b)∩Bdd(a, b)
as well. We just proved the first property. To show the second property, observe that for any function f that
is defined at x ∈ R and any scalar k ∈ R, we have |kf(x)| = |k||f(x)|. Taking the supremum of both sides
of the equality over all x ∈ (a, b) (which we can do because f is a bounded derivative function on (a, b), so
f(x) exists for x ∈ (a, b)) gives us the second property in Definition 13.20. Now, we show the last property.
Consider any f, g ∈ D0(a, b) ∩Bdd(a, b), we have

||f + g||sup = sup
x

(|f(x) + g(x)|)

where |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ supy |f(y)|+ supy |g(y)|. It follows that

sup
x

(|f(x) + g(x)|) ≤ sup
x

(sup
y
|f(y)|+ sup

y
|g(y)|) = sup

y
|f(y)|+ sup

y
|g(y)| = sup

x
|f(y)|+ sup

x
|g(y)|

which proves the triangular inequality.
Last, we show the normed space (D0(a, b)∩Bdd(a, b), || · ||sup) is complete with respect to the sup-norm.

That is, every Cauchy sequence in D0(a, b) ∩ Bdd(a, b) is convergent w.r.t the sup-norm. Consider any
sequence {fn}∞n=1 ⊆ D0(a, b)∩Bdd(a, b) that is || · ||sup-Cauchy. With the definition we know for any ε > 0,
there exists N ∈ N such that for any m,n > N , we have ||fm(x)−fn(x)||sup = supx∈(a,b) |fm(x)−fn(x)| < ε.
This means that if we fix any x ∈ (a, b), then the sequence {fn(x)}∞n=1 ⊆ R is a Cauchy sequence in R, which
is also a convergent sequence by the Cauchy Criterion (Theorem 2.6.4 in Abbott). Therefore, we can define
the limit function f on (a, b) as the pointwise limit of fn. Then with a similar argument as in the proof of
the Cauchy Criterion, we can show for all n > Nε that |fn(x) − f(x)| < ε for all x ∈ (a, b), which implies
that fn converges to f under the sup-norm.

We get immediately from this that f ∈ Bdd(a, b), because ||f ||sup = ||(f − fn) + fn||sup ≤ ||f − fn||sup +
||fn||sup < ∞ for any n > Nε. It is left to show that f is a derivative function on (a, b). Our plan is to
construct the primitive of f on (a, b) explicitly. Consider the (non-unique) sequence of primitives of {fn}∞n=1

on (a, b) and denote it by {Fn}∞n=1. Consider the sequence {Fn(x)−Fn(c)}∞n=1 for some c ∈ (a, b) and denote
it again (with the abuse of notation) by {Fn(x)}∞n=1. We see here that Fn(c) = 0 for all n ∈ N. If we can
show that {Fn} is Cauchy w.r.t. the sup-norm on (a, b), then with a similar argument as in the proof of the
Cauchy Criterion, we know Fn → F for some function F under the sup-norm. Then the proof complete if
we can show F is differentiable with its derivative coincides with f on (a, b). Now, we prove the sequence of
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functions {Fn} is Cauchy under the sup-norm on (a, b). Observe that for any x ∈ (a, b),

Fm(x)− Fn(x) = Fm(x)− Fm(c) + Fm(c)− Fn(c) + Fn(c)− Fn(x)

= [Fm(x)− Fn(x)]− [Fm(c)− Fn(c)] + [Fm(c)− Fn(c)]︸ ︷︷ ︸
=0

= (x− c) [Fm(x)− Fn(x)]− [Fm(c)− Fn(c)]

x− c
= (x− c)(fn(ξ)− fm(ξ))

for some ξ ∈ (a, b), where the last equality follows from the MVT. It follows that

||Fm(x)− Fm(x)||sup = ||(x− c)(fn(ξ)− fm(ξ))||sup = |x− c|︸ ︷︷ ︸
≤b−a

||(fn(ξ)− fm(ξ))||sup

so {Fm} is Cauchy under the sup-norm on (a, b) following from the fact that {fn} is Cauchy under the
sup-norm on (a, b). So the uniform limit of Fn on (a, b) exists. Denote it by F and observe that for any
x, y ∈ (a, b)∣∣∣∣F (x)− F (y)

x− y
− f(y)

∣∣∣∣ ≤ ∣∣∣∣ F (x)− F (y)

x− y
− Fn(x)− Fn(y)

x− y︸ ︷︷ ︸
= [F (x)−Fn(x)]−[F (y)−Fn(y)]

x−y
= f(ξ′)− fn(ξ

′)︸ ︷︷ ︸
(1)

, for some ξ′ ∈ (x, y)

∣∣∣∣+

∣∣∣∣Fn(x)− Fn(y)

x− y
− fn(y)

∣∣∣∣︸ ︷︷ ︸
(3)

+ |fn(y)− f(y)|︸ ︷︷ ︸
(2)

Fix ε > 0. Because {fn} converge uniformly on (a, b), we can pick Nε ∈ N large enough so that the term (1)
and (2) are less than ε for n > Nε. Because Fn is differentiable for all n ∈ N on (a, b), we can pick δε > 0
small enough so that (3) is less than ε for all x, y ∈ (a, b) with 0 < |x− y| < δε. This proves the statement.
�
Remark. Theorem 9.13 (in Hunter’s notes) alone is not suffice for the proof of the completeness of the
normed space. Recall that Thm 9.13 states that any {fn : A → R} is || · ||sup-convergent on A if and only
if it is || · ||sup-Cauchy on A. Note that here the set A is the domain of the functions. However, in the
definition of Banach space, we need to show any sequence of functions {fn} ⊆ A that is || · ||sup-Cauchy in
A is also || · ||sup-convergent in A, where the set A here is the function space that contains all fn’s.
Remark. Theorem 9.18 (in Hunter’s notes) is not suffice for the proof of the completeness of the normed
space. Recall that Theorem 9.18 assumes that the sequence of primitive functions converge pointwise to
the limit function, whereas in our setting we only know the behaviors of the derivative functions. And
since primitives/ antiderivatives are not unique (i.e. differ up to a constanct term), we cannot assume the
primitives functions converge pointwise without additional justifications.

(2) Show that (C1[a, b], || · ||C1) is a Banach space.

Consider any f ∈ C1[a, b], we know f : [a, b] → is continuous on a compact set, so f is bounded. With
the linearility of derivatives, we know C1[a, b] is a R-vector space. To show || · ||C1 is a norm on C1[a, b].
With a similar argument as in part (1), we can show that (C1[a, b], || · ||C1) is a normed vector space. It left
to show that any Cauchy sequence {fn}∞n=1 ⊆ C1[a, b] is convergent under the C1-norm on [a, b]. Assume
{fn} ⊆ C1[a, b] is Cauchy under the C1-norm. That is, for all ε > 0, there exists N ∈ N such that for all
m,n > N , we have ||fm − fn||C1 = ||fm − fn||sup + ||f ′m − f ′n||sup < ε. This means that {fn} and {f ′n} are
Cauchy under the sup-norm on [a, b]. With a similar argument as in the Cauchy Criterion, we can show that
both {fn} and {f ′n} is convergent under the sup-norm on [a, b] to their limit f and g, respectively. Apply
the Differentiable Limit Theorem, we get that f is differentiable with f ′ = g on [a, b]. Also, since each f ′n is
continuous (because fn ∈ C1[a, b]) and f ′n → f uniformly on [a, b], with the Continuous Limit Theorem we
know that f is continuous on [a, b] as well. This completes the proof. �
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