
MAT 127B
HW 14 Solutions(6.4.2/6.4.3/6.4.4)

Exercise 1 (6.4.2)

Decide whether each proposition is true or false, providing a short justification or counterex-
ample as appropriate.

(a) If
∑∞

n=1 gn converges uniformly, then (gn) converges uniformly to zero.

(b) If 0 ≤ fn(x) ≤ gn(x) and
∑∞

n=1 gn(x) converges uniformly, then
∑∞

n=1 fn converges
uniformly.

(c) If
∑∞

n=1 fn converges uniformly on A, then there exist constants Mn such that |fn(x)| ≤
Mn for all x ∈ A and

∑∞
n=1Mn converges.

Proof.

a) True

Say
∑∞

n=1 gn converges uniformly.

This implies the sequence

sn =
k∑
k=1

gk

is uniformly Cauchy which implies given ε > 0, there exists N ′ such that for all n,m >
N ′, we have (assume n > m)

|sn − sm| < ε =⇒
∣∣∣∣ n∑
k=m+1

gk

∣∣∣∣ < ε.

Hence given ε > 0, there exists N = N ′+ 1 such that for all n > N, (n > n− 1 ≥ N >
N ′)
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|sn − sn−1| = |gn| < ε.

Hence gn −→ 0 uniformly.

b) True

Given
∑∞

n=1 gn(x) converges uniformly implies that the sequence

sn =
n∑
k=1

gk(x)

is uniformly Cauchy. This implies that

Given ε > 0, there exists N ′ such that for all n,m > N ′ and for all x

|sn − sm| =
∣∣∣∣ m∑
k=n+1

gk(x)

∣∣∣∣ < ε.

Given ε > 0 there exists N = N ′, such that for n,m > N and for all x.

∣∣∣∣ m∑
k=1

fk(x)−
n∑
k=1

fk(x)

∣∣∣∣ =

∣∣∣∣ m∑
k=n+1

fk(x)

∣∣∣∣ ≤ ∣∣∣∣ m∑
k=n+1

gk(x)

∣∣∣∣ < ε.

Note that the second to last inequality is true since 0 ≤ fk(x) and 0 ≤ gk(x)

c) False

Let A = [−1, 1] and

f1(x) =

{
1
x
, if x 6= 0

0, if x = 0

f2(x) =

{
−1
x
, if x 6= 0

0, if x = 0

fn(x) = 0 (for n ≥ 3).

Given ε > 0, take N = 3.

For all n ≥ N and for all x ∈ A

∣∣∣∣ n∑
k=1

fk(x)− 0

∣∣∣∣ = 0 < ε.
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Hence fn converges to 0 uniformly but f1 is not bounded. Hence it is impossible to get
M1.

Hence the above proposition is not possible.

Exercise 2 (6.4.3)

a) Show that

g(x) =
∞∑
n=0

cos(2nx)

2n

is continuous on all of R.

b) The function g was cited in Section 5.4 as an example of a continuous nowhere differ-
entiable function. What happens if we try to use Theorem 6.4.3 to explore whether g
is differentiable?

Proof.

a) Consider the sequence

sn(x) =
n∑
k=0

cos(2kx)

2k

Need to prove that sn −→ g uniformly (or the sequence {sn}) is uniformly Cauchy)
and sn is continuous for every n.

Given ε > 0 take N such that 2N > ε.

Given n,m > N, (n < m) we have

|sn − sm| =
∣∣∣∣ m∑
k=n+1

cos(2kx)

2k

∣∣∣∣ ≤ m∑
k=n+1

∣∣∣∣cos(2kx)

2k

∣∣∣∣
≤

m∑
k=n+1

∣∣∣∣ 1

2k

∣∣∣∣ < ∞∑
k=n+1

1

2k
=

1

2n
<

1

2N
< ε.

Since this is true for all x hence sn is uniformly Cauchy, hence converges uniformly.

Given k,

fk(x) =
cos(2kx)

2k

is a continuous function on x. Finite sum of continuous functions are continuous, hence
each sn is a continuous function.
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b) If we try to apply Theorem 6.4.3, then we have

fk(x) =
cos(2kx)

2k

and each fk(x) are differentiable functions with

f ′k(x) = − sin(2kx).

Moreover if x = 0, then
∞∑
k=0

fk(0) =
∞∑
k=0

1

2k
= 2.

We need to show that for some x0 ∈ R,
the series does not converge, which implies that Theorem 6.4.3 would fail.

Consider x0 = 2π
3
.

sin(2kx0) = sin(2π/3) =

√
3

2
if k is even; sin(2kx0) = sin(4π/3) = −

√
3

2
if k is odd.

sn =
n∑
k=0

− sin(2kx0)

If n is odd, sn = 0.

If n is even sn =
√

3/2.

As we can see, 0 is a limit point of the series, but the series does not converge to 0.

Hence we cannot apply Theorem 6,4,3

Exercise 3 (6.4.4)

Define

g(x) =
∞∑
n=0

x2n

(1 + x2n)
.

Find the values of x where the series converges and show that we get a continuous function
on this set.
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Proof.
Let us consider the pointwise convergence of the functions

fn(x) =
x2n

1 + x2n
.

Let h(x) be the pointwise convergence of fn(x).
Then

h(x) =


0, if |x| < 1
1
2
, if x = ±1

1, if |x| > 1.

We know that if
∑∞

n=0 fn(x) converges then for each x, fn(x) −→ 0.
Hence the necessary condition shows |x| < 1.
Now given any x, such that |x| < 1, also noting that 1 + x2n > 1∣∣∣∣ ∞∑

n=0

x2n

1 + x2n

∣∣∣∣ ≤ ∣∣∣∣ ∞∑
n=0

x2n
∣∣∣∣ =

1

1− x2
.

Since the sequence

sn =
n∑
k=0

fk(x)

is an increasing sequence and bounded above hence the sequence {sn(x)} converges.

Now we will show that the function g(x) is also continuous on (−1, 1).
Consider the functions fn(x). Each of these functions are continuous on (−1, 1), hence sn =∑n

k=0 fn(x) a finite sum of continuous functions hence is continuous on (−1, 1).

We need to prove that g(x) is continuous at every point x ∈ (−1, 1).
Let x0 be any point in (−1, 1).
Let

y1 =
x+ 1

2
; y2 =

x− 1

2
.

Then we have −1 < y2 < x < y1 < 1.
Hence consider the set Ax = [y2, y1].

We will show that {sn} uniformly converges in Ax. (The sequence sn is uniformly Cauchy in
Ax)
Given ε > 0 take N such that

max{|y1|, |y2|}2N

1− (max{|y1|, |y2|})2
< ε.

5



Let max{|y1|, |y2|} = k.
Since k < 1, hence k2n −→ 0 =⇒ k2n/1− k2 −→ 0. This implies there exists an N, which
satisfies the above inequality.

Then for any n,m > N, (n < m) we have

|sn − sm| =
m∑

k=n+1

x2k

1 + x2k
<

m∑
k=n+1

x2k ≤
∞∑
k=N

x2n =
x2N

1− x2
< ε.

Hence {sn} is uniformly Cauchy in Ax, and each function {sn} is continuous implies g(x) is
continuous at x.
Since x ∈ (−1, 1) was arbitrary to begin with, hence g(x) is continuous for every x ∈ (−1, 1).
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