
MAT 127B
HW 16 Solutions(5.3.8/6.2.8/6.4.8)

Exercise 1 (5.3.8)

Assume f is continuous on an interval containing zero and differentiable for all x 6= 0. If
limx→0 f

′(x) = L, show f ′(0) exists and equals L

Proof.

f ′(0) = lim
x→0

f(x)− f(0)

x
.

Since f is continuous, hence limx→0 f(x) = f(0). Hence we can use L′Hospital′s Rule.

lim
x→0

(f(x)− f(0))′

(x)′
= lim

x→0

f ′(x)

1
= L =⇒ f ′(0) = lim

x→0

f(x)− f(0)

x
= L

Exercise 2 (6.2.8)

Let (gn) be a sequence of continuous functions that converges uniformly to g on a compact
set K. If g(x) 6= 0 on K, show (1/gn) converges uniformly on K to 1/g.

Proof.
Since gn(x) are continuous and uniformly converges to g(x) hence g(x) is continuous on K.
Since K is compact, and g(x) is continuous, hence g(x) is bounded implies m < |g(x)| < M
for some m,M.

We know that a continuous function defined on a compact set achieves its supremum and
infimum.
This implies there exists x ∈ K such that |g(x)| = m.
Since g(x) 6= 0 in K, hence m > 0.
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Since gn(x) converge uniformly to g(x), hence there exists N1 such that for all x ∈ K and
for all n ≥ N1

|g(x)− gn(x)| < m−m1 implies
m ≤ |g(x)| ≤ |gn(x)|+m−m1

implies

|gn(x)| ≥ m1

for all n ≥ N1.
Given ε > 0, there exists N2 such that for all x ∈ K and n ≥ N2

|gn(x)− g(x)| < ε(m1)(m)∣∣∣∣ 1

gn(x)
− 1

g(x)

∣∣∣∣ =
|g(x)− gn(x)|
|gn(x)||g(x)|

.

Choose N = max{N1, N2}.
For n ≥ N ≥ N1 we have

|gn(x)| > m1, =⇒ |gn(x)||g(x)| > (m1)(m) =⇒ 1

|gn(x)||g(x)|
<

1

(m1)(m)

Hence for all x ∈ K and for all n ≥ N, we have∣∣∣∣ 1

gn(x)
− 1

g(x)

∣∣∣∣ =
|g(x)− gn(x)|
|gn(x)||g(x)|

<
|g(x)− gn(x)|

(m1)(m)
< ε.

Hence (1/gn) converge uniformly on K to 1/g.

Exercise 3 (6.4.8)

Consider the function

f(x) =
∞∑
k=1

sin(x/k)

k

.
Where is f defined? Continuous? Differentiable? Twice-differentiable?

Proof.
f(x) is defined on R.

Fix any x ∈ R.
For any k, we have the Taylor’s theorem which states,
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sin

(
x

k

)
=
x

k
− sin(ξk)

2

x2

k2
.

Hence ∣∣∣∣ ∞∑
k=1

sin(x/k)

k

∣∣∣∣ ≤ ∞∑
k=1

∣∣∣∣sin(x/k)

k

∣∣∣∣ =
∞∑
k=1

∣∣∣∣ xk − sin(ξk)
2

x2

k2

k

∣∣∣∣ =
∞∑
k=1

∣∣∣∣ xk2 − sin(ξk)

2

x2

k3

∣∣∣∣
∞∑
k=1

∣∣∣∣ xk2 − sin(ξk)

2

x2

k3

∣∣∣∣ ≤ ∞∑
k=1

∣∣∣∣ xk2
∣∣∣∣+

∞∑
k=1

| sin(ξk)|
2

∣∣∣∣x2k3
∣∣∣∣ ≤ ∞∑

k=1

∣∣∣∣ xk2
∣∣∣∣+

∞∑
k=1

1

2

∣∣∣∣x2k3
∣∣∣∣

Since both the series converge hence is bounded say by M.
This implies ∣∣∣∣ ∞∑

k=1

sin(x/k)

k

∣∣∣∣ ≤M.

Choose N > 2x/π (N > −2x/π) such that for all n ≥ N , (x/n) < π/2, (x/n > −π/2) for
x > 0 (x < 0 respectively)

hence if sn =
∑n

k=1
sin(x/k)

k
, then the sequence {sn} is increasing (decreasing) for n > N and

is bounded hence converges.

If x = 0, f(0) = 0.
Hence f(x) is defined on all of R.

Given x0 ∈ R, consider Ax0 = [−x0 − 1, x0 + 1].
Let |x| < Mx0 for x ∈ Ax0 .
Since

∞∑
k=1

1

k2
;

∞∑
k=1

1

k3

converge hence the tail sum converges to 0 or in other words,
Given ε > 0, there exists N1 and N2, such that

for n ≥ N1,

∞∑
k=n

1

k2
<

ε

2Mx0

; and for n ≥ N2,

∞∑
k=n

1

k3
<

ε

2M2
x0

.

Let N = max{N1, N2}.
Then for any n ≥ N, and for all x ∈ Ax0 , we have∣∣∣∣f(x)−

n∑
k=1

sin(x/k)

k

∣∣∣∣ =

∣∣∣∣ ∞∑
k=n+1

sin(x/k)

k

∣∣∣∣
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≤
∞∑

k=n+1

∣∣∣∣sin(x/k)

k

∣∣∣∣ =
∞∑

k=n+1

∣∣∣∣ xk − sin(ξk)
2

x2

k2

k

∣∣∣∣ =
∞∑

k=n+1

∣∣∣∣ xk2 − sin(ξk)

2

x2

k3

∣∣∣∣
∞∑

k=n+1

∣∣∣∣ xk2 − sin(ξk)

2

x2

k3

∣∣∣∣ ≤ ∞∑
k=n+1

∣∣∣∣ xk2
∣∣∣∣+

∞∑
k=n+1

| sin(ξk)|
2

∣∣∣∣x2k3
∣∣∣∣

≤
∞∑

k=n+1

∣∣∣∣ xk2
∣∣∣∣+

∞∑
k=n+1

1

2

∣∣∣∣x2k3
∣∣∣∣ = |x|

∞∑
k=n+1

1

k2
+ |x|2

∞∑
k=n+1

1

2k3
< |x| ε

2Mx0

+ |x|2 ε

2M2
x0

Since x ∈ Ax0 and |x| < Mx0 hence,

|x| ε

2Mx0

+ |x|2 ε

2M2
x0

<
ε

2
+
ε

2
= ε.

Note since N is independent of x ∈ Ax0 , hence the series converges uniformly.
Moreover if

sn =
n∑
k=1

sin(x/k)

k
,

then sn is continuous since it is a finite sum of continuous functions in x.

sn(x) −→ f(x) uniformly in Ax0 and each sn is continuous, hence f(x) is continuous in Ax0 .
This implies f is continuous at the point x0.
Since x0 was arbitrarily chosen hence the function f(x) is continuous in R.

Each fk(x) = sin(x/k)
k

is differentiable with

f ′
k(x) =

cos(x/k)

k2

Consider

g(x) =
∞∑
k=1

cos(x/k)

k2

Choose N1 >
2Mx0

π
.

Then for any n ≥ N1,

tn =
n∑
k=1

cos(x/k)

k2
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tn is increasing.

|tn| ≤
∞∑
k=1

1

k2
=
π2

6
,

hence bounded.
This implies g(x) exists for all x.
Moreover the convergence is uniform in Ax0 since

|g(x)− tn| =
∣∣∣∣ ∞∑
k=n+1

cos(x/k)

k2

∣∣∣∣ ≤ ∞∑
k=n+1

∣∣∣∣cos(x/k)

k2

∣∣∣∣ ≤ ∞∑
k=n+1

1

k2

Given ε > 0 and since
∑∞

k=1 1/k2 converges, hence tail sums converge to 0,
so there exists an N > N1(independent of x ∈ Ax0) such that for all n ≥ N

∞∑
k=n

1

x2
< ε

Hence the convergence is uniform in Ax0 .
Moreover

∑∞
k=1 fk(x) converge for x = x0.

Hence f(x) is differentiable with the derivative f ′(x) = g(x). in Ax0 .
Hence f is differentiable at x0.
Since x0 is arbitrary hence f is differentiable for all x ∈ R.

Let

h(x) =
∞∑
k=1

(
cos(x/k)

k2

)′

=
∞∑
k=1

sin(x/k)

k3

Replacing f(x) with g(x) and g(x) with h(x), we can do the same trick to conclude that the
function f(x) is twice differentiable.
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