MAT 127B HW 16 Solutions(5.3.8/6.2.8/6.4.8)

Exercise 1 (5.3.8)

Assume f is continuous on an interval containing zero and differentiable for all $x \neq 0$. If $\lim_{x\to 0} f'(x) = L$, show f'(0) exists and equals L

Proof.

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

Since f is continuous, hence $\lim_{x\to 0} f(x) = f(0)$. Hence we can use L'Hospital's Rule.

$$\lim_{x \to 0} \frac{(f(x) - f(0))'}{(x)'} = \lim_{x \to 0} \frac{f'(x)}{1} = L \implies f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = L$$

Exercise 2 (6.2.8)

Let (g_n) be a sequence of continuous functions that converges uniformly to g on a compact set K. If $g(x) \neq 0$ on K, show $(1/g_n)$ converges uniformly on K to 1/g.

Proof.

Since $g_n(x)$ are continuous and uniformly converges to g(x) hence g(x) is continuous on K. Since K is compact, and g(x) is continuous, hence g(x) is bounded implies m < |g(x)| < M for some m, M.

We know that a continuous function defined on a compact set achieves its supremum and infimum.

This implies there exists $x \in K$ such that |g(x)| = m. Since $g(x) \neq 0$ in K, hence m > 0. Since $g_n(x)$ converge uniformly to g(x), hence there exists N_1 such that for all $x \in K$ and for all $n \geq N_1$ $|g(x) - g_n(x)| < m - m_1$ implies $m \leq |g(x)| \leq |g_n(x)| + m - m_1$ implies

$$|g_n(x)| \ge m_1$$

for all $n \ge N_1$. Given $\epsilon > 0$, there exists N_2 such that for all $x \in K$ and $n \ge N_2$

$$|g_n(x) - g(x)| < \epsilon(m_1)(m)$$
$$\left|\frac{1}{g_n(x)} - \frac{1}{g(x)}\right| = \frac{|g(x) - g_n(x)|}{|g_n(x)||g(x)|}.$$

Choose $N = \max\{N_1, N_2\}$. For $n \ge N \ge N_1$ we have

$$|g_n(x)| > m_1$$
, $\implies |g_n(x)||g(x)| > (m_1)(m) \implies \frac{1}{|g_n(x)||g(x)|} < \frac{1}{(m_1)(m)}$

Hence for all $x \in K$ and for all $n \ge N$, we have

$$\left|\frac{1}{g_n(x)} - \frac{1}{g(x)}\right| = \frac{|g(x) - g_n(x)|}{|g_n(x)||g(x)|} < \frac{|g(x) - g_n(x)|}{(m_1)(m)} < \epsilon.$$

Hence $(1/g_n)$ converge uniformly on K to 1/g.

Exercise 3 (6.4.8)

Consider the function

$$f(x) = \sum_{k=1}^{\infty} \frac{\sin(x/k)}{k}$$

Where is f defined? Continuous? Differentiable? Twice-differentiable?

Proof. f(x) is defined on \mathbb{R} .

Fix any $x \in \mathbb{R}$. For any k, we have the Taylor's theorem which states,

$$\sin\left(\frac{x}{k}\right) = \frac{x}{k} - \frac{\sin(\xi_k)}{2}\frac{x^2}{k^2}.$$

Hence

$$\left|\sum_{k=1}^{\infty} \frac{\sin(x/k)}{k}\right| \le \sum_{k=1}^{\infty} \left|\frac{\sin(x/k)}{k}\right| = \sum_{k=1}^{\infty} \left|\frac{\frac{x}{k} - \frac{\sin(\xi_k)}{2} \frac{x^2}{k^2}}{k}\right| = \sum_{k=1}^{\infty} \left|\frac{x}{k^2} - \frac{\sin(\xi_k)}{2} \frac{x^2}{k^3}\right|$$
$$\sum_{k=1}^{\infty} \left|\frac{x}{k^2} - \frac{\sin(\xi_k)}{2} \frac{x^2}{k^3}\right| \le \sum_{k=1}^{\infty} \left|\frac{x}{k^2}\right| + \sum_{k=1}^{\infty} \frac{|\sin(\xi_k)|}{2} \frac{x^2}{k^3} \le \sum_{k=1}^{\infty} \left|\frac{x}{k^2}\right| + \sum_{k=1}^{\infty} \frac{|\sin(\xi_k)|}{2} \frac{x^2}{k^3} \le \sum_{k=1}^{\infty} \left|\frac{x}{k^2}\right| + \sum_{k=1}^{\infty} \frac{1}{2} \frac{|x^2|}{k^3}$$

Since both the series converge hence is bounded say by M. This implies

$$\left|\sum_{k=1}^{\infty} \frac{\sin(x/k)}{k}\right| \le M.$$

Choose $N > 2x/\pi$ $(N > -2x/\pi)$ such that for all $n \ge N$, $(x/n) < \pi/2$, $(x/n > -\pi/2)$ for x > 0 (x < 0 respectively)

hence if $s_n = \sum_{k=1}^n \frac{\sin(x/k)}{k}$, then the sequence $\{s_n\}$ is increasing (decreasing) for n > N and is bounded hence converges.

If x = 0, f(0) = 0. Hence f(x) is defined on all of \mathbb{R} .

Given $x_0 \in \mathbb{R}$, consider $A_{x_0} = [-x_0 - 1, x_0 + 1]$. Let $|x| < M_{x_0}$ for $x \in A_{x_0}$. Since

$$\sum_{k=1}^{\infty} \frac{1}{k^2}; \qquad \sum_{k=1}^{\infty} \frac{1}{k^3}$$

converge hence the tail sum converges to 0 or in other words, Given $\epsilon > 0$, there exists N_1 and N_2 , such that

for
$$n \ge N_1$$
, $\sum_{k=n}^{\infty} \frac{1}{k^2} < \frac{\epsilon}{2M_{x_0}}$; and for $n \ge N_2$, $\sum_{k=n}^{\infty} \frac{1}{k^3} < \frac{\epsilon}{2M_{x_0}^2}$.

Let $N = \max\{N_1, N_2\}.$

Then for any $n \geq N$, and for all $x \in A_{x_0}$, we have

$$\left|f(x) - \sum_{k=1}^{n} \frac{\sin(x/k)}{k}\right| = \left|\sum_{k=n+1}^{\infty} \frac{\sin(x/k)}{k}\right|$$

$$\leq \sum_{k=n+1}^{\infty} \left| \frac{\sin(x/k)}{k} \right| = \sum_{k=n+1}^{\infty} \left| \frac{\frac{x}{k} - \frac{\sin(\xi_k)}{2} \frac{x^2}{k^2}}{k} \right| = \sum_{k=n+1}^{\infty} \left| \frac{x}{k^2} - \frac{\sin(\xi_k)}{2} \frac{x^2}{k^3} \right|$$
$$\sum_{k=n+1}^{\infty} \left| \frac{x}{k^2} - \frac{\sin(\xi_k)}{2} \frac{x^2}{k^3} \right| \leq \sum_{k=n+1}^{\infty} \left| \frac{x}{k^2} \right| + \sum_{k=n+1}^{\infty} \frac{|\sin(\xi_k)|}{2} \left| \frac{x^2}{k^3} \right|$$

$$\leq \sum_{k=n+1}^{\infty} \left| \frac{x}{k^2} \right| + \sum_{k=n+1}^{\infty} \frac{1}{2} \left| \frac{x^2}{k^3} \right| = |x| \sum_{k=n+1}^{\infty} \frac{1}{k^2} + |x|^2 \sum_{k=n+1}^{\infty} \frac{1}{2k^3} < |x| \frac{\epsilon}{2M_{x_0}} + |x|^2 \frac{\epsilon}{2M_{x_0}^2}$$

Since $x \in A_{x_0}$ and $|x| < M_{x_0}$ hence,

$$|x|\frac{\epsilon}{2M_{x_0}} + |x|^2\frac{\epsilon}{2M_{x_0}^2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Note since N is independent of $x \in A_{x_0}$, hence the series converges uniformly. Moreover if

$$s_n = \sum_{k=1}^n \frac{\sin(x/k)}{k},$$

then s_n is continuous since it is a finite sum of continuous functions in x.

 $s_n(x) \longrightarrow f(x)$ uniformly in A_{x_0} and each s_n is continuous, hence f(x) is continuous in A_{x_0} . This implies f is continuous at the point x_0 .

Since x_0 was arbitrarily chosen hence the function f(x) is continuous in \mathbb{R} .

Each $f_k(x) = \frac{\sin(x/k)}{k}$ is differentiable with

$$f'_k(x) = \frac{\cos(x/k)}{k^2}$$

Consider

$$g(x) = \sum_{k=1}^{\infty} \frac{\cos(x/k)}{k^2}$$

Choose $N_1 > \frac{2M_{x_0}}{\pi}$. Then for any $n \ge N_1$,

$$t_n = \sum_{k=1}^n \frac{\cos(x/k)}{k^2}$$

 t_n is increasing.

$$|t_n| \le \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6},$$

hence bounded.

This implies g(x) exists for all x.

Moreover the convergence is uniform in A_{x_0} since

$$|g(x) - t_n| = \left|\sum_{k=n+1}^{\infty} \frac{\cos(x/k)}{k^2}\right| \le \sum_{k=n+1}^{\infty} \left|\frac{\cos(x/k)}{k^2}\right| \le \sum_{k=n+1}^{\infty} \frac{1}{k^2}$$

Given $\epsilon > 0$ and since $\sum_{k=1}^{\infty} 1/k^2$ converges, hence tail sums converge to 0, so there exists an $N > N_1$ (independent of $x \in A_{x_0}$) such that for all $n \ge N$

$$\sum_{k=n}^{\infty} \frac{1}{x^2} < \epsilon$$

Hence the convergence is uniform in A_{x_0} . Moreover $\sum_{k=1}^{\infty} f_k(x)$ converge for $x = x_0$. Hence f(x) is differentiable with the derivative f'(x) = g(x). in A_{x_0} . Hence f is differentiable at x_0 . Since x_0 is arbitrary hence f is differentiable for all $x \in \mathbb{R}$.

Let

$$h(x) = \sum_{k=1}^{\infty} \left(\frac{\cos(x/k)}{k^2}\right)' = \sum_{k=1}^{\infty} \frac{\sin(x/k)}{k^3}$$

Replacing f(x) with g(x) and g(x) with h(x), we can do the same trick to conclude that the function f(x) is twice differentiable.