
MAT127B HW Solution 02/17 Chutong Wu

7.2.2 Consider f(x) = 1/x over the interval [1, 4]. Let P be the partition consisting of the points
{1, 3/2, 2, 4}.

(a) Compute L(f, P ), U(f, P ), and U(f, P )− L(f, P ).

With the same notations as in the textbook, we have
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(b) What happens to the value of U(f, P )− L(f, P ) when we add the point 3 to the partition?
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(c) Find a partition P ′ of [1, 4] for which U(f, P ′)− L(f, P ′) < 2
5 .

Consider the partition P = {1, 32 , 2,
5
2 , 3,

7
2 , 4}. Then we have
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7.2.4 Let g be bounded on [a, b] and assume there exists a partition P with L(g, P ) = U(g, P ). Describe

g. Is g necessarily continuous? Is it integrable? If so, what is the value of
∫ b
a
g?

We show that g is a constant on [a, b]. Rewriting the statement, we can find for g : [a, b]→ R a partition
P = {a = x0 < · · · < xn = b} of [a, b] such that for all ε > 0,

U(g, P )− L(g, P ) =

n∑
i=1

(Mk −mk)∆xk < ε

Assume fsc that g is not a constant on [xk−1, xk], then pick 0 < ε < (Mk−mk)∆xk and we get a contradiction.
This means that g is a constant on each [xk−1, xk] for k = 1, · · · , n and must be a constant on [a, b] since each

two adjacent intervals share an end point. Therefore, g is continuous and integrable with
∫ b
a
g = g(a)[b− a].

7.2.5 Assume that, for each n, fn is an integrable function on [a, b]. If (fn) → f uniformly on [a, b],
prove that f is also integrable on this set. (We will see that that this conclusion does not necessarily
follow if the convergence is pointwise.)

Fix ε > 0. Because fn → f uniformly on [a, b], we can find Nε ∈ N such that |fNε
(x)− f(x)| < ε for all

x ∈ [a, b]. Because fNε
is integrable on [a, b], there is a partition P of [a, b] such that U(fNε

, P )−L(fNε
, P ) < ε.

A little computation then shows that U(f, P ) ≤ U(fNε
, P ) + (b− a)ε and L(f, P ) ≥ L(fNε

, P )− (b− a)ε. It
follows that U(f, P )− L(f, P ) ≤ [2(b− a) + 1]ε, so f is integrable on [a, b]. �
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