MAT 127B HW 18 Solutions(7.2.3/7.2.7/7.3.1)

Exercise 1 (7.2.3)

(a) Prove that a bounded function f is integrable on [a, b] if and only if there exists a sequence of partitions $(P_n)_{n=1}^{\infty}$ satisfying:

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0$$

and in this case

 $\int_{a}^{b} f(x) = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} L(f, P_n).$

- (b) For each n, let P_n be the partition of [0, 1] into n equal subinterval. Find formulas for $U(f, P_n)$ and $L(f, P_n)$ if f(x) = x. The formula $1 + 2 + 3 + \cdots + n = n(n+1)/2$ will be useful.
- (c) Use the sequential criterion for integrability from (a) to show directly that f(x) = x is integrable on [0, 1] and compute $\int_0^1 f(x)$.

Proof.

a) \Rightarrow

Say f be a bounded function which is integrable.

Since f is bounded, hence U(f, P), L(f, P) exists for every partition and since f is integrable we have U(f) = L(f),

$$U(f) = \inf_{P} U(f, P); L(f) = \sup_{P} L(f, P).$$

Claim: If P_1, P_2 be two partitions, then $P = P_1 \cup P_2$ is a finer partition with

 $U(f, P) \leq U(f, P_i)$ and $L(f, P) \geq L(f, P_i)$ for i = 1, 2.

We will prove for i = 1. (It follows similarly for i = 2.)

Let $a_i, a_{i+1} \in P_1$.

If there exists $b_s \in P_2$ such that $a_i < b_j < b_{j+1} < \ldots b_k < a_{i+1}$, then in U(f, P), for the interval $[a_i, a_{i+1}]$ we have

$$M_j(b_j - a_i) + \sum_{l=j+1}^k M_l(b_l - b_{l-1}) + M_{k+1}(a_{i+1} - b_k),$$

where

$$M_{l} = \sup\{f(x)|x \in [b_{l-1}, b_{l}]\} \le \sup\{f(x)|x \in [a_{i}, a_{i+1}]\} = M$$

and similarly $M_j = \sup\{f(x)|x \in [a_i, b_j]\} \le M, M_{k+1} = \sup\{f(x)|x \in [b_k, a_{i+1}]\} \le M$. Hence

$$M_j(b_j - a_i) + \sum_{l=j+1}^k M_l(b_l - b_{l-1}) + M_{k+1}(a_{i+1} - b_k) \le M(a_{i+1} - a_i)$$

This is true for every consecutive pair of points in P_1 .

This implies

$$U(f, P) \le U(f, P_1).$$

For the lower sums change every inequality. Then the same logical implications hold true and hence

$$L(f, P) \ge L(f, P_1).$$

Similarly true for P_2 .

Given $n \in \mathbb{N}$ consider $U(f) + \frac{1}{n}$ and $L(f) - \frac{1}{n}$.

Then there exists P_n^1 and P_n^2 such that

$$U(f) \le U(f, P_n^1) \le U(f) + \frac{1}{n}$$

and

$$L(f) \ge L(f, P_n^2) \ge L(f) - \frac{1}{n}$$

Consider $P_n = P_n^1 \cup P_n^2$.

Then

$$U(f) \le U(f, P_n) \le U(f, P_n^1) \le U(f) + \frac{1}{n}$$

and

$$L(f) \ge L(f, P_n) \ge L(f, P_n^2) \ge L(f) - \frac{1}{n}$$

Hence,

$$\lim_{n\to\infty}U(f)\leq \lim_{n\to\infty}U(f,P_n)\leq \lim_{n\to\infty}U(f)+\frac{1}{n}=U(f)$$
$$\implies U(f)=\lim_{n\to\infty}U(f,P_n)$$
and

$$\lim_{n \to \infty} L(f) \ge \lim_{n \to \infty} L(f, P_n) \ge \lim_{n \to \infty} L(f) - \frac{1}{n} = L(f).$$

 $\implies L(f) = \lim_{n \to \infty} L(f, P_n)$ Since f is integrable,

$$\lim_{n \to \infty} U(f, P_n) - L(f, P_n) = U(f) - L(f) = 0.$$

 \Leftarrow

Say there exists P_n such that

$$\lim_{n \to \infty} U(f, P_n) - L(f, P_n) = 0.$$

We know

$$U(f) \leq U(f, P_n)$$
 and $L(f) \geq L(f, P_n)$

for every n,

hence for every **n**

$$0 \le U(f) - L(f) \le U(f, P_n) - L(f, P_n).$$

$$0 \le U(f) - L(f) \le \lim_{n \to \infty} U(f, P_n) - L(f, P_n) = 0.$$

This implies

$$U(f) = L(f)$$

and hence f is integrable.

Moreover we have seen,

$$\lim_{n \to \infty} U(f, P_n) = U(f) = \int_a^b f = L(f) = \lim_{n \to \infty} L(f, P_n).$$

b) Let P_n be as stated.

 $P_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{k}{n}, \dots, 1\}$ $f(x) = x. \text{ For each interval } \left[\frac{i}{n}, \frac{i+1}{n}\right], \text{ with } i = 0, 1, \dots, n-1$ $M_i = \sup\left\{f(x)|x \in \left[\frac{i}{n}, \frac{i+1}{n}\right]\right\} = \frac{i+1}{n}$

and

$$m_i = \inf\left\{f(x)|x \in \left[\frac{i}{n}, \frac{i+1}{n}\right]\right\} = \frac{i}{n}$$

Hence

$$U(f, P_n) = \sum_{i=0}^{n-1} M_i\left(\frac{1}{n}\right) = \left(\frac{1}{n^2}\right) \sum_{i=0}^{n-1} i + 1 = \frac{(n)(n+1)}{2n^2}$$

and

$$L(f, P_n) = \sum_{i=0}^{n-1} m_i \left(\frac{1}{n}\right) = \left(\frac{1}{n^2}\right) \sum_{i=0}^{n-1} i = \frac{(n)(n-1)}{2n^2}.$$

c) Consider the sequence P_n as for part b)

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = \lim_{b \to \infty} \frac{2n}{2n^2} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Since f(x) = x is bounded in [0, 1] hence f is integrable.

Moreover,

$$\int_0^1 f(x) = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} \frac{n^2 + n}{2n^2} = \frac{1}{2}.$$

Exercise 2(7.2.7)

Let $f : [a, b] \longrightarrow \mathbb{R}$ be increasing on the set [a, b] (i.e., $f(x) \leq f(y)$ whenever x < y). Show that f is integrable on [a, b].

Proof.

Consider the partition $P_n = \left\{ a, a + \frac{(b-a)}{n}, \dots, a + \frac{k(b-a)}{n}, \dots, b \right\}.$ Given any interval, $(k = 0, 1, \dots, n-1)$

$$A_{k} = \left[a + \frac{k(b-a)}{n}, a + \frac{(k+1)(b-a)}{n}\right]$$
$$M_{k} = \sup\{f(x)|x \in A_{k}\} = f\left(a + \frac{(k+1)(b-a)}{n}\right)$$

and

$$m_k = \sup\{f(x)|x \in A_k\} = f\left(a + \frac{(k)(b-a)}{n}\right).$$

Hence

$$U(f, P_n) = \sum_{k=0}^{n-1} f\left(a + \frac{(k+1)(b-a)}{n}\right) \frac{(b-a)}{n}$$
$$L(f, P_n) = \sum_{k=0}^{n-1} f\left(a + \frac{(k)(b-a)}{n}\right) \frac{(b-a)}{n}$$
$$U(f, P_n) - L(f, P_n) = \frac{(b-a)}{n} (f(b) - f(a)).$$

Hence

$$\lim_{n \to \infty} [U(f, P_n) - L(f, P_n)] = 0.$$

Also

$$f(a) \le f(x) \le f(b)$$

for $x \in [a, b]$

implying by the previous exercise that f is a bounded function, hence f is integrable.

Exercise 3(7.3.1)

Consider the function

$$h(x) = \begin{cases} 1, & \text{if } 0 \le x < 1\\ 2, & \text{if } x = 1 \end{cases}$$

over the interval [0, 1].

- a) Show that L(f, P) = 1 for every partition P of [0, 1].
- b) Construct a partition P for which U(f, P) < 1 + 1/10.
- c) Given $\epsilon > 0$, construct a partition P for which $U(f, P_{\epsilon}) < 1 + \epsilon$.

Proof.

a) Let $P = \{0 = x_0, x_1, x_2, \dots, x_n = 1\}$ is a partition. Then for $k = 1, 2, \dots, n$

$$m_k = \inf\{f(x) | x \in [x_{k-1}, x_k]\} = 1$$

Hence

$$L(f, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}) = \sum_{k=1}^{n} (x_k - x_{k-1}) = x_n - x_0 = 1.$$

b) Let $n \in \mathbb{N}$ and consider the partition

$$P_n = \left\{ 0, \frac{1}{n}, \dots, \frac{k}{n}, \dots, 1 \right\}.$$
$$M_k = \sup\left\{ f(x) | x \in \left[\frac{k-1}{n}, \frac{k}{n}\right] \right\} = \left\{ \begin{matrix} 1 & \text{if } 1 \le k \le n-1\\ 2 & \text{if } k = n \end{matrix} \right.$$

Hence

$$U(f, P_n) = \sum_{k=1}^n M_k\left(\frac{1}{n}\right) = \sum_{k=1}^{n-1} M_k\left(\frac{1}{n}\right) + \frac{2}{n} = \frac{n-1}{n} + \frac{2}{n} = \frac{n+1}{n} = 1 + \frac{1}{n}.$$

Let n = 11, and $P = P_n$. Then $U(f, P) = 1 + \frac{1}{11} < 1 + \frac{1}{10}$

c) Given $\epsilon > 0$, choose N such that $\frac{1}{N} < \epsilon$, Then from part b) choose $P_{\epsilon} = P_N$. Then

$$U(f, P_{\epsilon}) = 1 + \frac{1}{N} < 1 + \epsilon.$$

	1	2
1	L	4
	r	1
л	L	