
MAT 127B
HW 26 Solutions(8.3.9/8.3.10/8.3.11)

Exercise 1 (8.3.9)

Theorem 8.3.1

(Integral Remainder Theorem).
Let f be differentiable N + 1 times on (−R,R) and assume f (N+1) is continuous. Define
an = f (n)(0)/n! for n = 0, 1, . . . , N, and let

SN(x) = a0 + a1x + a2x
2 + · · ·+ aNx

N .

For all x ∈ (−R,R), the error function EN(x) = f(x)− SN(x) satisfies

EN(x) =
1

N !

∫ x

0

f (N+1)(t)(x− t)Ndt.

Proof.
The case x = 0 is easy to check, so let’s take x 6= 0 in (−R,R) and keep in mind that x is a
fixed constant in what follows. To avoid a few technical distractions, let’s just consider the
case x > 0.

a) Show

f(x) = f(0) +

∫ x

0

f ′(t)dt.

b) Now use a previous result from this section to show

f(x) = f(0) + f ′(0)x +

∫ x

0

f ′′(t)(x− t)dt.

c) Continue in this fashion to complete the proof of the theorem.
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Proof.

a) From the fundamental Theorem of Calculus,

We have f : [0, x] −→ R is integrable. and∫ x

0

f ′(t) = f(x)− f(0).

Hence

f(x) = f(0) +

∫ x

0

f ′(t).

b) Let g(t) = x− t : [0, x] −→ R.
Consider the function

(f ′(t)g(t))′ = f ′′(t)g(t) + f ′(t)g′(t).

From fundamental Theorem of Calculus.∫ x

0

(f ′(t)g(t))′ =

∫ x

0

f ′′(t)g(t) +

∫ x

0

f ′(t)g′(t).

∫ x

0

f ′′(t)g(t) =

∫ x

0

(f ′(t)g(t))′ −
∫ x

0

f ′(t)g′(t) = f ′(x)g(x)− f ′(0)g(0)−
∫ x

0

f ′(t)g′(t)

= f ′(x)(0)− f ′(0)(x)−
∫ x

0

f ′(t)(−1) = −f ′(0)x + f(x)− f(0).

f(x) = f(0) + f ′(0)x +

∫ x

0

f ′′(t)(x− t).

c) Let us assume that the theorem be true for k = N.

Let us prove the theorem for k = N + 1.

Let f be N + 2 differentiable function on (−R,R) with f (N+2)is continuous.

This implies f is an N +1 differentiable function on (−R,R) with f (N+1) is continuous.

Hence, we have
EN(x) = f(x)− SN(x)

holds true.

Define an = f (n)(0)/n! for n = 0, 1, . . . , N, and let

SN(x) = a0 + a1x + a2x
2 + · · ·+ aNx

N .
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For all x ∈ (−R,R), the error function EN(x) = f(x)− SN(x) satisfies

EN(x) =
1

N !

∫ x

0

f (N+1)(t)(x− t)Ndt.

1

N !

∫ x

0

f (N+1)(t)(x− t)Ndt

=
1

N !

[
f (N+1)(x)

−(x− x)N+1

N + 1
−f (N+1)(0)

−(x− 0)N+1

N + 1

]
− 1

N !

∫ x

0

f (N+2)(t)
−(x− t)N+1

N + 1
dt

=
1

(N + 1)
!f (N+1)(0)xN+1 +

1

(N + 1)!

∫ x

0

f (N+2)(t)(x− t)N+1dt

Define
aN+1 = f (N+1)(0)/(N + 1)!.

Hence we have
EN(x) = aN+1x

N+1 + EN+1(x).

We have,

EN+1(x) + aN+1x
N+1 = EN(x) = f(x)− SN(x).

Hence
EN+1(x) = f(x)− [SN(x) + aN+1x

N+1] = f(x)− SN+1(x).

This proves the induction hypothesis.

Hence the theorem is proved

Exercise 2 (8.3.10)

a) Make a rough sketch of 1/
√

1− x and S2(x) over the interval (−1, 1), and compute
E2(x) for x = 1/2, 3/4, and 8/9.

b) For a general x satisfying −1 < x < 1, show

E2(x) =
15

16

∫ x

0

(
x− t

1− t

)2
1

(1− t)3/2
dt.
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c) Explain why the inequality ∣∣∣∣x− t

1− t

∣∣∣∣ ≤ |x|.
is valid, and use this to find an overestimate for |E2(x)| that no longer involves an
integral. Note that this estimate will necessarily depend on x. Confirm that things are
going well by checking that this overestimate is in fact larger than |E2(x)| at the three
computed values from part (a).

d) Finally, show EN(x) −→ 0 as N −→∞ for an arbitrary x ∈ (−1, 1).

Proof.

a) From the previous Exercise 1:

We have:

E2(x) = f(x)− S2(x).

S2(x) = a0 + a1x + a2x
2,

where ai = f (i)(0)/i!.

f (0)(0) = 1 = a0; f (1)(0) = 1/2 = a1; f (2)(0)/2! = 3/8 = a2

Hence

• x = 1/2, we have

f(1/2) =
√

2; S2

(
1

2

)
=

43

32
; E2

(
1

2

)
=
√

2− 43

32
≈ 0.0704.

• x = 3/4, we have

f(3/4) = 2; S2

(
3

4

)
=

203

128
; E2

(
3

4

)
= 2− 203

128
≈ 0.414.

• x = 8/9, we have

f(8/9) = 3; S2

(
8

9

)
=

47

27
; E2

(
8

9

)
= 3− 47

27
≈ 1.2592.

4



Figure 1: Graph of f(x)

Figure 2: S2(x)
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b) For a given f(x) which is twice differentiable and f (2) is continuous in (−1, 1), then

E2(x) =
1

2!

∫ x

0

f 3(t)(x− t)2dt.

f (0)(x) =
1√

1− x
; f (1)(x) =

1

2

1

(1− x)3/2
; f (2)(x) =

3

4

1

(1− x)5/2
;

f (3)(x) =
15

8

1

(1− x)7/2

E2(x) =
1

2!

∫ x

0

15

8

1

(1− t)7/2
(x− t)2dt =

15

16

∫ x

0

1

(1− t)3/2

(
(x− t)

(1− t)

)2

dt

c) We have either of the two inequalities that hold for x, t

−1 < 0 ≤ t ≤ x < 1; −1 < x ≤ t ≤ 0 < 1.

Hence for the 1st inequality, we have

x < 1

=⇒ tx ≤ t

=⇒ x− tx = x(1− t) ≥ x− t > 0 and 1− t > 0

=⇒ |x| = x ≥ x− t

1− t
=

∣∣∣∣x− t

1− t

∣∣∣∣.
Hence for the 2nd inequality, we have

x < 1 and t ≤ 0

=⇒ tx ≥ t

=⇒ x− tx = x(1− t) ≤ x− t < 0 and 1− t > 0

=⇒ x ≤ x− t

1− t
< 0

=⇒ |x| = −x ≥ −(x− t)

1− t
=

∣∣∣∣x− t

1− t

∣∣∣∣.

E2(x) =
15

16

∫ x

0

(
x− t

1− t

)2
1

(1− t)3/2
dt ≤ 15

16

∫ x

0

(|x|)2 1

(1− t)3/2
dt
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=
15|x|2

16

∫ x

0

1

(1− t)3/2
dt =

15|x|2

16
2

[
1

(1− t)1/2

]∣∣∣∣x
0

=
15x2

8

[
1

(1− x)1/2

]
−15x2

8
= A2(x)[let]

•
E2(1/2) ≈ 0.0704 < 0.1 < 0.15 < 0.1942 ≈ A2(1/2)

•
E2(3/4) ≈ 0.414 < 0.5 < 0.8 < 1.0547 ≈ A2(3/4)

•
E2(8/9) ≈ 1.2592 < 2 < 2.5 < 2.963 ≈ A2(8/9).

d)

f (0)(x) =
1√

1− x

f (n)(x) =
n∏

k=1

(2k − 1)
1

2n

1

(1− x)(2n+1)/2
n ≥ 1.

Proof by induction:

We already know this is true for n = 1.

Say it is true for k = n.

Then

f (n+1)(x) =

(
f (n)

)′
=

n∏
k=1

(2k − 1)
1

2n

(
1

(1− x)(2n+1)/2

)′
=

n∏
k=1

(2k − 1)
1

2n

2n + 1

2

1

(1− x)(2n+3)/2

f (n+1)(x) =
n∏

k=1

(2k − 1)
1

2n

2n + 1

2

1

(1− x)(2n+3)/2
=

n+1∏
k=1

(2k − 1)
1

2n+1

1

(1− x)(2n+3)/2
.

Hence

EN(x) =
1

N !

∫ x

0

f (N+1)(t)(x−t)Ndt =
1

N !

∫ x

0

N+1∏
k=1

(2k − 1)
1

2N+1

1

(1− t)(2N+3)/2
(x−t)Ndt.
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=
1

N !

N+1∏
k=1

(2k − 1)
1

2N+1

∫ x

0

1

(1− t)N+(3/2)
(x− t)Ndt

=
1

N !

N+1∏
k=1

(2k − 1)
1

2N+1

∫ x

0

1

(1− t)(3/2)

(
x− t

1− t

)N

dt

Hence,

|EN(x)| ≤ 1

N !

N+1∏
k=1

(2k − 1)
1

2N
|x|N

[
1√

(1− x)
− 1

]
Since |x| < 1, hence ∃k such that |x|k < 1

2
. (since |x|k −→ 0.)

Given |x| < 1, consider the sequence

sN =
1

N !

N+1∏
k=1

(2k − 1)
|x|N

2N
=

N∏
k=1

[
(2k + 1)|x|

2k

]

|En(x)| ≤ sN

[
1√

(1− x)
− 1

]
and if sn −→ 0, then

EN −→ 0 as N −→∞.

Hence we want to prove that

sn −→ 0.

We will show that given |x| < 1 there exists Nx ∈ N such that sn is decreasing
for n ≥ Nx.

Moreover we know that
sn ≥ 0 ∀n ∈ N.

This implies sn −→ a ≥ 0.

We will show
sn −→ 0

This proves the theorem.
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Given |x| < 1,

consider the sequence

aN =
2N

2N + 1
.

This sequence is increasing (since aN = 1/(1 + 1/2n), 2n is increasing, hence 1 + 3/2n
is decreasing, 1/(1 + 3/2n) is increasing), and converges to 1.

This proves there exists Nx,

such that for n > N

|x| < 2n

2n + 1
.

Consider for n > Nx

sn
sn−1

=
(2n + 1)|x|

2n
< 1.

Hence for n > Nx

{sn} is a decreasing sequence. .

Consider
(2n + 1)|x|

2n
.

This sequence is decreasing and converges to |x| < 1.

Fix an r such that |x| < r < 1.

Then there exists N
(2)
x such that for all n > N

(2)
x .

(2n + 1)|x|
2n

< r

Take N = max{Nx, N
(2)
x }

Now, for n > N

sn <
(2n + 1)|x|

2n
sn−1 < rsn−1.

Hence for n > N, we have

sn < rsn−1 < r2sn−2 < . . . rn−NsN = rn
sN
rN

.

Hence
sn < rn

sN
rN

=⇒ lim
n→∞

sn ≤ lim
n→∞

rn
sN
rN

= 0.
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This implies sn −→ 0 and hence the theorem is proved.

Exercise 3 (8.3.11)

Assuming that the derivative of arcsin(x) is indeed 1/
√

1− x2

supply the justification that allows us to conclude

arcsin(x) =
∞∑
n=0

cn
2n + 1

x2n+1 for all |x| < 1.

Proof.
We have that

√
1− x2 =

∞∑
n=0

cnx
2n

for |x| < 1.
Since this is a power series which converges uniformly for |x| < 1, hence R(

√
1− x2) ≥ 1.

From the fundamental theorem of calculus since the function is continuous in (−1, 1) hence√
1− x2 is integrable and

G(x) =

∫ x

0

√
1− x2dt

is a differentiable function on (−1, 1) with G′(x) =
√

1− x2. and R(G(x)) ≥ 1.
and

G(x) =

∫ x

0

√
1− t2dt =

∫ x

0

∞∑
n=0

cnt
2ndt =

∞∑
n=0

∫ x

0

cnt
2ndt =

∞∑
n=0

cn
2n + 1

[t2n+1]|x0

For G′(x) = (arcsin x)′ =
√

1− x2, G(0) = arcsin(0) = 0,
hence G(x) = arcsin x.

arcsinx =
∞∑
n=0

cn
2n + 1

x2n+1.
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