MAT 127 B-A
Winter 2021
Right Board
Overview:
Define (again) Derivative
Integral
Study spaces of functions
- consider nice functions
 - poly nominals
 - trig polynomials
- consider limits of these to get more functions
\[e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots \]

useful as a soln to a diff eqn

common in phys.

Weierstrass fn:

\[w(x) = \cos(x) + \frac{1}{2} \cos(3x) + \frac{1}{4} \cos(7x) + \cdots \]

extremely jagged.

Similar functions come up in physics as paths of particles in a field.
Example:

1. \(f(x) = x^2 \)
 \[
 f'(3) = 2 \cdot 3 = 6 \quad \text{(rule)} \quad (x^2)' = 2x
 \]

or using def:

\[
\begin{align*}
 f'(3) &= \lim_{h \to 0} \frac{f(h+3) - f(3)}{h} \\
 &= \lim_{h \to 0} \frac{(h+3)^2 - 3^2}{h} \\
 &= \lim_{h \to 0} \frac{h^2 + 6h + 9 - 9}{h} \\
 &= \lim_{h \to 0} \frac{h^2 + 6h}{h} \\
 &= \lim_{h \to 0} (h + 6) = 6
\end{align*}
\]
Compute \(f'_2(x) = \begin{cases} 2x & x > 0 \\ 0 & x = 0 \\ 0 & x < 0 \end{cases} \)

Since derivatives are local rules work in intervals

But at \(x = 0 \) use the definition

\[
f'_2(0) = \lim_{h \to 0} \frac{f_2(h+0) - f_2(0)}{h} = \lim_{h \to 0} \frac{f_2(h)}{h}
\]
Recall: \(\lim_{x \to a} F(x) = L \quad \text{iff} \quad \lim_{x \to a^+} F(x) = L = \lim_{x \to a^-} F(x) \).

Here:
\[
\lim_{h \to 0^+} \frac{f_2(h)}{h} = \lim_{h \to 0^+} \frac{h^2}{h} = \lim_{h \to 0^+} h = 0
\]
\[
\lim_{h \to 0^-} \frac{f_2(h)}{h} = \lim_{h \to 0^-} \frac{0}{h} = \lim_{h \to 0^-} 0 = 0
\]
g.

cts at 0
not diff at 0 since:

$$g_2' (0) = \lim_{h \to 0} \frac{g_2(h)}{h}$$
use squeeze thm:

\[0 \leq g_2(h) \leq 2h^2 \]

so \[0 \leq \frac{g_2(h)}{h} \leq h \]

\[\lim_{h \to 0} = 0 \leq \lim_{h \to 0} \frac{g_2(h)}{h} \leq \lim_{h \to 0} h = 0 \]

\[\checkmark \]
Notation:
If f is cts in (a,b) write $f \in C([a,b])$
If f is diff in (a,b) write $f \in D'(a,b)$
If f is ctsly diff in (a,b) write $f \in C'([a,b])$

Picture: $C^0([a,b]) \supset D'(a,b) \supset C'(a,b) \supset D^2(a,b)$...
Containment requires proof.
Proper content (not equal) requires examples.

Example 1: \(f(x) = |x| \) has \(f(x) \in C^0 \mathbb{R} \)
but \(f(x) \notin D'(\mathbb{R}) \)

Example 2: \(f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \) has \(f(x) \in D' \mathbb{R} \)
but \(f(x) \notin C^1 \mathbb{R} \)

In breakout RMS:

1. More examples to see
\[c^0 \neq D^1 \]
\[D^1 \neq c^1 \]
\[c^1 \neq D^2 \] New

<table>
<thead>
<tr>
<th>(c^0) not (D^1)</th>
<th>(D^1) not (c^1)</th>
<th>(c^1) not (D^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^3 \sin \frac{1}{x})</td>
<td>(\begin{cases} x^2 & \text{if } x > 0 \ 0 & \text{if } x \leq 0 \end{cases})</td>
<td>(\frac{1}{x^2})</td>
</tr>
</tbody>
</table>

What are \(c^\infty \) and \(D^\infty \)?

<table>
<thead>
<tr>
<th>Same (c^\infty) (D^\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exp) (\text{trig}) (\frac{1}{x^2})</td>
</tr>
</tbody>
</table>
where does $x^3 \sin \frac{1}{x}$ live?
If \(f, g : \mathbb{R} \to \mathbb{R} \) and \(k \in \mathbb{R} \)

Linearity: \(k \cdot f \in \text{Fun}(\mathbb{R}) \)

\[f + g \in \text{Fun}(\mathbb{R}) \]

Product: \(f \cdot g \in \text{Fun}(\mathbb{R}) \)

Composition: \(g \circ f \in \text{Fun}(\mathbb{R}) \)

(or \(f \cdot g \in \text{Fun}([0,1]) \))

eg:

\[f = \frac{1}{x}, \quad g = \sin(x) \]

\[k = 3 \]

\[3 \cdot \frac{1}{x} = k \cdot f \]

\[\sin(x) + \frac{1}{x} = f \cdot g \]

\[\frac{1}{x} \sin(x) = f \circ g \]

\[g \circ f = \sin \left(\frac{1}{x} \right) \]

\[f \circ g = \frac{1}{\sin(x)} \]
Continuity: If f, g cts (or $f, g \in C^0(\mathbb{R})$), then $rof, f+g, fog, gof$ are also cts.

In particular if G is cts at $f(c)$ and f is cts at c, then

$$
\lim_{x \to c} (G \circ f)(x) = (G \circ f)(c) = G(f(c)) = \lim_{y \to f(c)} G(y)
$$

G of cts at c

Eg: $\lim_{x \to \pi} \sin\left(\frac{1}{x}\right) = \sin \frac{1}{\pi} = \lim_{y \to \frac{1}{\pi}} \sin(y)$
\[
(3 \sin(x))' = 3 \sin'(x) = 3 \cos(x)
\]
\[
(sin(x) + \frac{1}{x})' = \cos(x) - \frac{1}{x^2}
\]
\[
(\frac{1}{x} \sin(x))' = -\frac{1}{x^2} \sin(x) + \frac{1}{x} \cos(x)
\]
\[
\left(\frac{\sin(x)}{x}\right)' = \frac{x \cos(x) - 1 \cdot \sin(x)}{x^2}
\]
\[
[\sin(\frac{1}{x})]' = \cos(\frac{1}{x}) \cdot (-\frac{1}{x^2})
\]
Proof of Chain Rule:

Use

Parametric Derivs:

Claim: \(\lim_{s \to t} \frac{y(s) - y(t)}{x(s) - x(t)} = \frac{y'(t)}{x'(t)} \)

and this is also the slope of the tangent line.

(use for L'Hôpital rule if \(x'(t) \neq 0 \))
What are possible target line slopes at $x'(t) = 0$? Typically the line is vertical.

but any value is possible e.g. if $y' = x' = 0$