1. Fourier Series F18.4

Fall 2018 Problem 4: Consider the functions $f_N(x) = (2\pi)^{-1} \sum_{n=-N}^{N} e^{inx}$. Show that if $g \in L^2(\mathbb{T})$ then $\{f_N * g\}$ converges in $\|\cdot\|_{L^2}$ -norm to g(here, * denotes convolution).

1.1. Ideas F18.4.

- f_N is given as a Fourier series.
- The Fourier series is an isometry.
- Convolution works well with Fourier series, turning into pointwise multiplication.
- Convergence in $\|\cdot\|_{L^2}$ -norm can arise from an onb expansion.

1.2. Write up F18.4. Compute

- (1) $\widehat{f_N * g}$
- $(2) = \widehat{f_N} \cdot \widehat{g}$
- $\begin{array}{ll}
 (3) &= \chi_{|n| \le N} \cdot \hat{g} \\
 (4) &= \sum_{|n| \le N} \langle \chi_{\{n\}}, \hat{g} \rangle \chi_{\{n\}}
 \end{array}$
- (5) which converges in $\|\cdot\|_{\ell^2}$ -norm to \hat{g} .
- (6) Thus $\{f_N * g\}_N$ converges in $\|\cdot\|_{L^2}$ -norm to g.

Justifications::

- (1)-(2) **Theorem:** If $a, b \in L^2\mathbb{T}$ then $\widehat{a * b} = \hat{a} \cdot \hat{b}$ in $\ell^2\mathbb{Z}$.
- (2)-(3) $e^{inx} = 2\pi \chi_{\{n\}}$.
- (3)-(4) Rewriting in terms of the ℓ^2 inner product.
 - (5) **Theorem:** If $\{x_n\}_{n\in\mathbb{Z}}$ is an orthonormal basis for a (separable) Hilbert space H and $y \in H$ then $\{\sum_{|n| \leq N} \langle x_n, y \rangle x_n\}_N$ converges in norm to y.
 - (6) **Theorem:** $: L^2\mathbb{T} \to \ell^2\mathbb{Z}$ is an isometry of Hilbert spaces and hence preserves norm convergence of sequences.

2. Fourier Series F16.2

Fall 2016 Problem 2: Let $f: \mathbb{T} \to \mathbb{C}$ be a C^1 function such that $\int_{-\pi}^{\pi} f(x)dx = 0$. Show that

$$\int_{-\pi}^{\pi} |f(x)|^2 dx \le \int_{-\pi}^{\pi} |f'(x)|^2 dx.$$

2.1. Ideas F16.2.

- T suggests Fourier series.
- $\int |f|^2$ is $\|\cdot\|_{L^2}^2$ which also suggests Fourier.
- $\hat{f}' = \pm in\hat{f}$ suggests Fourier.
- $\int f = \hat{f}(0)$ suggests Fourier.

2.2. Write up F16.2. Compute

- (1) $\int_{-\pi}^{\pi} |f'(x)|^2 dx$
- $(2) = ||f'||_{L^2}^2$
- $(3) = \|\widehat{f}'\|_{\ell^2}^2$
- $(4) = ||n\hat{f}(n)||_{\ell^2}^2$
- $(5) \ge \hat{f}^2(0) + \|\hat{f}\|_{\ell^2}^2$ $(6) = \int_{-\pi}^{\pi} f(x) dx + \|f\|_{L^2}^2$ $(7) = 0 + \int_{-\pi}^{\pi} |f(x)|^2 dx.$

Justifications:

- (1)-(2) This is the definition.
- (2)-(3) **Theorem:** If $a \in L^2 \mathbb{T}$ then $||a||_{L^2} = ||\hat{a}||_{\ell^2}$.
- (3)-(4) **Theorem:** If $a \in C^1\mathbb{T} \subseteq L^2\mathbb{T}$ then $\widehat{a'}(n) = n\widehat{a}(n)$. (4)-(5) Expanding and using $n^2 \ge 1$ unless n = 0.
- (5)-(6) This is the definition and another use of the isometry from (3).
- (6)-(7) This is the hypothesis and definition of the norm.