1. Hilbert F13.1

Fall 2013 Problem 1:

Find $\inf_f \int_0^1 |f(x) - x|^2 dx$ where the infimum is taken over all $f \in L^2([0,1])$ such that $\int_0^1 f(x)(x^2 - 1)dx = 1$.

1.1. Ideas F13.1. :

- Consider an orthogonal projection.
- Work with g(x) = f(x) x instead of f(x).
- Thus one is trying to minimize the norm of g subject to a given inner product so the minimum should occur with g a multiple of $x^2 1$.

2. Hilbert S16.6

Spring 2016 Problem 6:

Let H be a Hilbert space and let U be a unitary operator, that is surjective and isometric, on H. Let $I = \{v \in H : Uv = v\}$ be the subspace of invariant vectors with respect to U.

- (1) Show that $\{Uw w : w \in H\}$ is dense in I^{\perp} and that I is closed.
- (2) Let P be the orthogonal projection onto I. Show that

$$\frac{1}{N}\sum_{n=1}^{N}U^{n}v \to Pv.$$

2.1. Ideas S16.6.

- Rewrite I as the kernel of U 1 making it closed.
- Call J the image of U-1 and check the containment $J \subseteq I^{\perp}$ by using the linearity properties of the inner product and that (Uv, Uu) = (v, u).
- Consider the spectrum of U I in a unit circle.
- Check for the projection properties $P = P^2 = P^*$, or $P|_J = 0$ and $P|_I = 1$, or $\ker(P) = \operatorname{im}(P)^{\perp}$.
- Try to use (1): Write $S_N = \frac{1}{N} \sum_{n+1}^N U^n$ and compute that Sv = v if $v \in I$.
- Try to use (1): Compute $S_N(U-1)w = N^{-1}(U^{N+1}w-w)$ which approaches 0.
- Check norms to see that $||S_N||_{op}$ is uniformly bounded and hence (1) implies (2).
- To see that J is dense in I^{\perp} choose $x \in J^{\perp} \cap I^{\perp} = (I+J)^{\perp}$.
- If $x \in J^{\perp}$ then for every v there is 0 = (x, (U-1)v) = ((1-U)x, Uv) but U is onto so (1-U)x = 0.