1. Hilbert S14.4

Spring 2014 Problem 4:

Let P_1 and P_2 be a pair of orthogonal projections onto H_1 and H_2 , respectively, where H_1 and H_2 are closed subspaces of a Hilbert space H. Prove that P_1P_2 is an orthogonal projection if and only if P_1 and P_2 commute. In that case, prove that P_1P_2 is the orthogonal projection onto $H_1 \cap H_2$.

1.1. Ideas S14.4.

- Sketch an example in \mathbb{R}^2 .
- Recall P is an orthogonal projection iff $P = P^2 = P^*$ iff $\ker(P) = \operatorname{im}(P)^{\perp}$.

1.2. Write up S14.4.

- (1) If: Assume $P_1P_2 = P_2P_1$.
 - (a) $(P_1P_2)^* = (P_2P_1)^* = P_1^*P_2^* = P_1P_2.$
 - (b) $(P_1P_2)^2 = P_1P_2P_1P_2 = P_1P_1P_2P_2 = P_1P_2.$
- (2) Only if: Assume $(P_1P_2)^* = P_1P_2$. (a) $P_1P_2 = (P_1P_2)^* = P_2^*P_1^* = P_2P_1$.
- (3) Image: $\operatorname{im}(P_1P_2) \subseteq H_1 \cap H_2$ Note that $\operatorname{im}(PQ) \subseteq \operatorname{im}(P)$ so that if PQ = QP then $\operatorname{im}(PQ) = \operatorname{im}(QP) \subseteq \operatorname{im}(P) \cap \operatorname{im}(Q)$.
- (4) Image: $\operatorname{im}(P_1P_2) \supseteq H_1 \cap H_2$ Note that if P is a projection and $x \in \operatorname{im}(P)$ then x = Px. Thus if P and Q are projections and $x \in \operatorname{im}(P) \cap \operatorname{im}(Q)$ then $x = Px = PQx \in \operatorname{im}(PQ)$.

2. Hilbert F17.6

Fall 2017 Problem 6: Consider a linear functional $\phi(f) = f(\frac{1}{2})$ defined on the space of polynomials on [0, 1]. Does ϕ extend to a bounded linear functional on $L^2([0, 1])$? Prove or disprove.

2.1. Ideas F17.6.

- Extension suggests Hahn-Banach might give the extension.
- Bounded suggests continuous. Recall the definition.
- Polynomials suggest (Stone)-Weierstrass might give counterexamples.
- Since L^2 functions are not defined at points there is no obvious guess for an extension so maybe look for a counterexample.
- Try to get polynomials with large value at $\frac{1}{2}$ but small 2-norm.

2.2. Write up F17.6. :

Definition: A linear functional

$$g: L^2([0,1]) \to \mathbb{R}$$

is bounded if $||g||_{op} = \sup_{f \in L^2([0,1]) - \{0\}} \frac{|g(f)|}{||f||_2}$ is finite. Assume there is an extension g and compute

$$||g||_{op} \ge \sup_{f} \frac{|f(\frac{1}{2})|}{||f||_2}$$

with f a nonzero polynomial.

Theorem:(Weierstrass) Polynomials are uniformly dense in C[0, 1]. Note that if $f \in C([0, 1])$ then $||f||_2 \leq ||f||_{\infty}$.

For each ϵ choose $g \in C([0,1]$ with $g(\frac{1}{2}) = 1$ and $\|g\|_2 \leq \epsilon$ and by the theorem choose $f \in \mathbb{R}[x]$ with $\|f - g\|_{\infty} \leq \epsilon$. Thus $|f(\frac{1}{2})| \geq 1 - \epsilon$ and $\|f - g\|_2 \leq \epsilon$. Thus $\|f\|_2 \leq \|f - g\|_2 + \|g\|_2 \leq 2\epsilon$ and $\|g\|_{op} \geq \frac{1-\epsilon}{2\epsilon}$ which is not bounded.