Winter 2008 Problem 5: Let $1 \leq p < \infty$ and let I = (-1, 1) denote the open interval in \mathbb{R} . Find the values of α as a function of p for which the function $|x|^{\alpha} \in W^{1,p}(I)$.

Fall 2009 Problem 1: For $\epsilon > 0$, let η_{ϵ} denote the family of *standard* mollifiers on \mathbb{R}^2 . Given $u \in L^2(\mathbb{R}^2)$, define the functions

$$u_{\epsilon} = \eta_{\epsilon} \star u \text{ in } \mathbb{R}^2.$$

Prove that

 $C\|Du_{\epsilon}\|_{L^{2}(\mathbb{R}^{2})} \leq \|u\|_{L^{2}(\mathbb{R}^{2})},$

where the constant C depends on the mollifying function but not on u.

Fall 2012 Problem 4: The heat kernel on \mathbb{R}^3 is given by $H_t(x) = (4\pi t)^{-\frac{3}{2}} e^{-\frac{|x|^2}{4t}}$ where |x| denotes the Euclidean norm of $x \in \mathbb{R}^3$. Prove that if $u \in L^3(\mathbb{R}^3)$, then $t^{\frac{1}{2}} \|H_t * u\|_{L^{\infty}(\mathbb{R}^3)} \to 0$ as $t \to 0^+$. (Note that * denotes convolution.)

Fall 2013 Problem 3: For $\delta > 0$ small, let $u \in L^{\frac{3}{2}+\delta}(\mathbb{R}^3) \cap L^{\frac{3}{2}-\delta}(\mathbb{R}^3)$. Prove that $v = u * \frac{1}{|x|} \in L^{\infty}(\mathbb{R}^3)$ and provide a bound for $||v||_{L^{\infty}(\mathbb{R}^3)}$ which depends only on $||u||_{L^{\frac{3}{2}+\delta}(\mathbb{R}^3)}$.

Spring 2010 Problem 5: Let $H^s(\mathbb{R})$ denote the Sobolev space of order s on the real line \mathbb{R} , and let

$$||u||_{s} = \left(\int_{\mathbb{R}} (1+|\xi|^{2})^{s} |\hat{u}(\xi)|^{2} d\xi\right)^{\frac{1}{2}}$$

denote the norm on $H^s(\mathbb{R})$ where $\hat{u}(\xi) = \frac{1}{2\pi} \int u(x) e^{-ix\xi} dx$ denotes the Fourier transform of u.

Suppose that r < s < t, all real, and $\epsilon > 0$ is given. Show that there exists a constant C > 0 such that

$$||u||_{s} \le \epsilon ||u||_{t} + C ||u||_{r} \quad \forall u \in H^{t}(\mathbb{R}).$$

Spring 2013 Problem 6: Let *I* be the interval (0,1) and $q \ge p \ge 1$. Show that there exists a constant C = C(p,q,I) such that

$$||u||_{L^q(I)} \le C ||u||_{W^{1,p}(I)}$$

for all $u \in W_0^{1,p}(I)$. (Hint: First show that $||u||_{L^{\infty}(I)} \leq C||u||_{W^{1,p}(I)}$ for all $u \in W_0^{1,p}(I)$.)

Fall 2015 Problem 4: Let $f : \mathbb{R}^3 \to \mathbb{R}$ with $f, \nabla f \in L^1(\mathbb{R}^3)$. Show that

$$\int_{\mathbb{R}^3} |f(x)|^{\frac{3}{2}} dx \le \left(\int_{\mathbb{R}^3} |\nabla f(x)| dx\right)^{\frac{3}{2}}.$$