
Problem 6, Fall 2018: Let Ω = {(x, y) : y ≥ 0, x ∈ R}. Let f ∈ C1
c (R

2)
(space of continuous functions with compact support and with continuous first
derivatives). Show the following
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Problem 4, Fall 2017: Let [a, b] ⊆ R be a closed interval and let

‖f‖∞ = sup
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denote the L∞ and L2 norms. If f ∈ C1([a, b]), prove that

‖f‖2
∞

≤
‖f‖22
b− a

+ 2‖f‖2‖f
′‖2.

Fall 2014 Problem 5: Suppose that f : R → R is a smooth (C∞) function
with compact support. Prove that
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Hint. You can use the fact that
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Fall 2016 Problem 6: Let D denote the closed unit disk in C, and consider
the complex Hilbert space
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Prove that the linear functional L : H → C defined by L(f) = f(1) is bounded,
and find an element g ∈ H such that L(f) = 〈g, f〉. (In other words, so that g

represents L as in the Riesz representation theorem.)

Fall 2014 Problem 1: Suppose f : R → R is twice continuously differentiable.
Suppose |f(x)| ≤ 1 and |f ′′(x)| ≤ 1 for all x ∈ R Prove or disprove that |f ′(x)| ≤ 2
for all x ∈ R.
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