Problem 6, Fall 2018: Let Q = {(z,y) : y > 0,z € R}. Let f € C}(R?)
(space of continuous functions with compact support and with continuous first
derivatives). Show the following
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Problem 4, Fall 2017: Let [a,b] C R be a closed interval and let

b
£l = sup [f@]  Ifle =/ [ 17@)Pdo

z€la,b]

denote the L> and L? norms. If f € Cl([a, b)), prove that
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Fall 2014 Problem 5: Suppose that f : R — R is a smooth (C°°) function
with compact support. Prove that
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Hint. You can use the fact that
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Fall 2016 Problem 6: Let D denote the closed unit disk in C, and consider
the complex Hilbert space
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Prove that the linear functional L : H — C defined by L(f) = f(1) is bounded,
and find an element g € H such that L(f) = (g, f). (In other words, so that g
represents L as in the Riesz representation theorem.)

Fall 2014 Problem 1: Suppose f : R — R is twice continuously differentiable.
Suppose |f(z)] <1 and |f”(z)| < 1 for all x € R Prove or disprove that |f'(x)| < 2
for all x € R.



