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Chapter 1

A Short Introduction to LP Spaces

1.1 Notation

We will usually use €2 to denote an open and smooth domain in R", forn =1,2,3,... In
this chapter on LP spaces, we will sometimes use €2 to denote a more general measure
space, but the reader can usually think of €2 as an open subset of Euclidean space.
The support of a function f is the closure of the set {z € Q) } f(z) #0}.

DEFINITION 1.1 (Continuous functions and compact support). For Q € R™, we let
%°(Q) denote the collection of continuous functions on €2, and we denote by 62 (£2)

the collection of those functions in €°(Q) with compact support contained in €.
DEFINITION 1.2 (Uniformly continuous functions). For 2 € R® we set
¢°(Q) := {u: Q - R|u is uniformly continuous} .

For integers k = 0, we let €*(Q2) denote the collection of functions possessing partial
derivatives to all orders up to k which are uniformly continuous on 2. We use € ()
to denote the functions in ¢’*(B) for all bounded balls B contained in €.

DEFINITION 1.3 (Bounded continuous functions). For 2 € R™ we set
%»(Q) := {u: Q — R|u is bounded and continuous},

with norm |[u]«, ) = max lu(z)|. For integers k > 0, we let 6;*(€2) denote the collection
e
of functions possessing partial derivatives to all orders up to k& which are bounded and

continuous on ().
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REMARK 1.4. In the case that Q € R" is bounded, ¢°(Q2) < %,(Q) and €°(Q) is a

Banach space with norm |u4 g, = max |u(x)||j
€2

€*(Q) is the space of functions which are k times differentiable in € for integers k = 0.

%°(Q2) then coincides with € (€2), the space of continuous functions on 2.

E*(Q) = ) €FQ).

k=0
spt(f) denotes the support of a function f, and is the closure of the set {z € Q| f(z) #
0}.
.(Q) = {uec €(Q)| sptu compact in Q}.
CFQ) = C*(Q) N E6.(Q).
Cr(Q) =" (Q) N E.(2). We will also use Z(2) to denote this space, which is known

as the space of test functions in the theory of distributions.

1.2 Lebesgue Measure and Lebesgue Integral

Let 2 € R" denote an open and smooth subset. The domain €2 is called smooth
whenever its boundary 0f2 is a smooth (n — 1)-dimensional hypersurface.
The theory of LP spaces is founded upon the so-called Lebesgue integral (which

requires some basic knowledge of the Lebesgue measure). We define the set LP(€)) as
LP(Q) = {f :  — R measurable ‘f |f(z)|Pde < oo}
Q

where the integral is interpreted in the sense of Lebesgue. E| We will assume that all

!Suppose that 2 = (0,1) and let u(x) = sin(1/z). Then clearly u € €;(£2) but u is not uniformly
continuous, as the limit lim, ¢+ sin(1/z) does not exist.
2The following theorem is usually presented in an undergraduate course in analysis:

THEOREM 1.5. Let Q) € be a domain with positive measure (length, area, volume, etc.). Then, a
bounded function is Riemann integrable over Q if and only it is continuous a.e. in Q. The notation
“a.e.” denotes almost everywhere, which means up to a set of measure zero,

In a first course on measure theory, the following theorem is established:

THEOREM 1.6. If f is non-negative Riemann (improper) integrable over Q, then f is measurable
and the Riemann (improper) integral of f over § is the same as the Lebesgue integral.

Therefore, the Lebesgue integral is a generalization of the Riemann integral. See Appendix
for a review of this material.
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functions and sets are Lebesgue measurable. The Lebesgue measure is often denoted
by w so that p(€2) denotes the length if n = 1, the area if n = 2, the volume if n = 3,

and so on. We shall also use the notation 2| to mean p(€2).

1.2.1 The three pillars of analysis

A function f: ) — R is Lebesgue integrable if J f(z)dx < oo. (We shall often write
Q

that f is integrable to mean that f : {2 — R is Lebesgue integrable.)

The following three theorems will be used throughout the course.

THEOREM 1.7 (Monotone Convergence Theorem). Let fi : Q@ — R u {400} denote a
sequence of mon-negative functions, and suppose that the sequence fi. is monotonically

increasing; that is,
h<fas<fa<
Then
limJ fr(z)dx :J lim fi(x)dx
Q

k—0o0 Q k—0o0

THEOREM 1.8 (Fatou’s Lemma). Suppose the sequence fr, : @ — R u {+w} and
ft = 0. Then

f liminf fi(z) hm lllff fr(z
Q

k—o0

EXAMPLE 1.9. Consider 2 = (0,1) < R and suppose that f; = k1. Then
1 1

f ful)dz =1 for all ke N, but J lim inf fi () = 0.

0 0 koo

THEOREM 1.10 (Dominated Convergence Theorem). Suppose the sequence fi, :

R, fr — [ almost everywhere (with respect to Lebesque measure), and furthermore,
|fr] < ge LYQ). Then fe LYQ) and

klglolo L fr(x)de = L f(z)dz

Equivalently, fr, — f in L*(Q) so that ]}im Ife = fllzie = 0.
—00

In the exercises, you will be asked to prove that the Monotone Convergence
Theorem implies Fatou’s Lemma which, in turn, implies the Dominated Convergence

Theorem. See Appendix for a review of basic integration theory.
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1.2.2 Iterated integrals
Let I; € R" and I, € R™ denote open subsets.

THEOREM 1.11 (Fubini). Let f :I; x Iy —> R be an integrable function. Then both

iterated integrals exist and

Lth -] ( ) dz)dy — fl ( ) dy)dr

The existence of the iterated integrals is by no means enough to ensure that the

function is integrable over the product space. As an example, let I; = I, = [0, 1]. Set

-yt
fay) = @ Ty =00,

0 if (z,y) = (0,0).

Then a standard computation shows that

Ll Jol f(w,y)dedy = _%7 Ll fol f(a,y)dyde = %.

Fubini’s theorem shows, of course, that f is not integrable over [0, 1]%.
When the integrand f is non-negative (and whether f is integrable or not), one
can compute the integral of f over a product space using iterated integrals; this is

due to Tonelli’s theorem which we state as follows:

THEOREM 1.12 (Tonelli). Let f : Iy x I — R be non-negative and measurable. Then

Lxl f= 1 ( 1 f(x’y)dx>dy:£ ( 1 f(x,y)dy)dx_

There is a converse to Fubini’s theorem; however, according to which the existence
of one of the iterated integrals is sufficient for the integrability of the function over
the product space. This converse statement is a direct consequence of the Fubini and

Tonelli theorems, and is stated as the following

COROLLARY 1.13. Let f : I xIs — R. If one of the iterated integrals J
I

(], 176 wldy)dr

or J ( |f(:n,y)|d:c) dy exists, then the function f is integrable on the product space
I, ©Jn

Iy x Iy, and hence, the other iterated integral exists and

J{lxbf: 12< Ilf(%y)ch)dy:fh( hf(%y)dy)dx.
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1.3 LP Spaces

Now, we turn to the definition and basic properties of LP spaces.

1.3.1 Definitions and basic properties

DEFINITION 1.14. Let 0 < p < o0 and let {2 denote and open subset of R*. If

f € — R is a measurable function, then we define

Flaray = (| 157d2)” and [ lueey o= es5 sup.eo 0]

Note that | f|»(q) may take the value oo. (Unless stated otherwise, we will assume that

all functions under consideration are measurable with respect to Lebesgue measure.)

DEFINITION 1.15. The space LP(2) is the set

L) = {f: Q=R |flr@) < o}.
The space LP(S2) satisfies the following vector space properties:
1. For each a € R, if f € LP(Q) then af € LP(Q);
2. If f,g € LP(Q2), then

If+glP <227N(|fIP + [g),

so that f + g € LP(2).
3. The triangle inequality is valid if p > 1.

Pehaps the most interesting cases are p = 1,2, 0o, while all of the L” spaces arise often

in nonlinear estimates, and can play an important role in scaling arguments.

DEFINITION 1.16. The space (7, called “little LP”, will be useful when we introduce

Sobolev spaces on the torus and the Fourier series. For 1 < p < o0, we set

0

3 el < oo},

n=—a

w— {{xn},,ez

where Z denotes the integers.
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1.3.2 Basic inequalities
Convexity is fundamental to L? spaces for p € [1,00).
LEMMA 1.17. For A€ (0,1), 22 < (1 = \) + Az.

Proof. Set f(z) = (1 — ) + Az — 2?; hence, f'(z) = A — Az*~! = 0 if and only if
A(1 — 22 1) = 0 so that 2 = 1 is the critical point of f. In particular, the minimum
occurs at x = 1 with value

f)=0<(1—X\) + Az —a2*. al

LEMMA 1.18. For a,b > 0 and X € (0,1), a*b'™* < Xa + (1 — \)b with equality if
a=b.

Proof. 1f either a = 0 or b = 0, then this is trivially true, so assume that a,b > 0. Set
x = a/b, and apply Lemma to obtain the desired inequality. O

THEOREM 1.19 (Hélder’s inequality). Suppose that 1 < p < o0 and 1 < q < o0 with

]1) n (1] = 1. If f € LP(Q) and g € LY(Q), then fge L'(Q). Moreover,

Ifallry < [ flr@ 9l

Note that if p = ¢ = 2, then this is the Cauchy-Schwarz inequality since |(f, g) 2| <
| fglrs-

Proof. We use Lemma |1.18 Let \ = 1 and set
p

|fIP s
T PR P
Lr(Q) 9llLa(e)
for all z € Q. Then a*b*> = al/Pp1=1/P = g1/Ppl/a 5o that

1f1- gl B S VO S ]
[ Ale@lglraey — U@ 2 191%0@

Integrating this inequality yields

1P 1 gl 11
|- 1] ”"’<J< P 1 Ig]| )dx:_+_:1. i
HfHLp @9l za) Pl al9liaq) poq

1 1. .
DEFINITION 1.20. The exponent g = Ll (or -=1- 7) is called the conjugate
p— q p
exponent of p.
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LEMMA 1.21 (Interpolation inequality). Let 1 < r < s <t < o0, and suppose that
a l—a

uwe L"(Q) n LYQ). Then for é = +

t

g0y < Jul Gy llul iy -

Proof. By Hélder’s inequality,

J |ul*dx =J ||| 1% dae
Q
(1—a)s

Q
as— B 1—a)s 4~ t as 1—a)s
<(] furesan)” ([ O a) gl

THEOREM 1.22 (Minkowski’s inequality). If 1 < p < o0 and f,g € LP(QQ) then

If +glze < [fllze@) + gllze) -

Proof. If f + g = 0 a.e., then the statement is trivial. Assume that f + g # 0 a.e.
Consider the equality

1f+glP =1f+gl-1f+gP < (Il +1g)|f + g,

and integrate over €) to find that

JWf+mwx<j[mﬂ+MMf+mpﬂmr
Q Q

Hoélder’s
< (Iflee@ + lglio) If + 97 ooy -

1 _ i
5+ 67 ey = (| 11+ o)

from which it follows that

1—1
(| 17+ aae) ™" <Uflosey + ol

. . 1 1
which completes the proof, since — =1 — —.
p q

COROLLARY 1.23. For 1 < p < oo, LP(Q) is a normed linear space.
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EXAMPLE 1.24 (Concavity). Let © denote a subset of R® whose Lebesgue measure
is equal to one. If f € L'(Q) satisfies f(z) = M > 0 for almost all x € €, then

log(f) € L'(Q2) and satisfies
Jﬂ log fdz < log ( L fdx) .

To see this, consider the function g(t) = t—1—logt for ¢t > 0. Compute ¢'(t) = 1—% =0

1
so t =1 is a minimum (since ¢”(1) > 0). Thus, logt <t — 1 and letting t — 7 we see
that .
1—¥<logt<t—1. (1.1)

Since log = is continuous and f is measurable, then log f is measurable for f > 0. Let

t = /(@) in 1} to find that
(FAFAY))

f(z)

Iz _
1l

1
f(x)
Since g(z) < log f(z) < h(x) for two integrable functions g and h, it follows that

log f(z) is integrable. Next, integrate 1} to finish the proof, as J < /(@) —1)dx =
. a\Mflie

1—

< log f(x) —log | flrr ) < (1.2)

1.3.3 The space (L*(Q), | - |rr@)) is complete

Recall the a normed linear space is a Banach space if every Cauchy sequence has a limit
in that space; furthermore, recall that a sequence x; — x in B if khirog |z — x||g = 0.

The proof of completeness makes use of the following two lemmas which are
restatements of the Monotone Convergence Theorem and the Dominated Convergence

Theorem, respectively.

LEMMA 1.25 (MCT). If fr € L'(Q), 0 < fi(z) < fo(z) < -, and || fe| 1) < C < o0,
then klim fu(z) = f(x) with f e LYQ) and | fi — f|r1@) — 0 as k — 0.
—00

LEMMA 1.26 (DCT). If fr € L'(Q), klim fr(x) = f(z) a.e., and if 3 g € L} (Q) such
that | fi(z)| < |g(z)| a.e. for alln, then fe L'(Q) and | fr — f|lz1@) — 0.

Proof. Apply the Dominated Convergene Theorem to the sequence hy = |fr — f| — 0
a.c., and note that |h| < 2g. o
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THEOREM 1.27. If1 < p < o, then L? () is a Banach space.

Proof. Step 1. The Cauchy sequence. Let {f;};_; denote a Cauchy sequence in

LP(€2), and assume without loss of generality (by extracting a subsequence if necessary)

that ka-H — fk”Lp(Q) < 2k
Step 2. Conversion to a convergent monotone sequence. Define the sequence

{gk}loeozl as
g =0, g.=|fl+|fo— fil+ - +|fk — fx_1| for E=2.

It follows that

0<g1<92<---<gk<~--

so that g is a monotonically increasing sequence. Furthermore, {gx}{_; is uniformly
bounded in LP((2) as

o0
p
L gidfc = HngiP(Q) < (HleLP(Q) + Z Ifi = fz‘—lHLP(Q)> S (HleLP(Q) + 1)p5
i=2

thus, by the Monotone Convergence Theorem, g /" ¢* a.e., g € LP(Q), and gx < g a.c.

Step 3. Pointwise convergence of {f.};2,. Forall k > 1,

k+0
< Z |fi — fic1] = grse — 90 — 0 ae. as £ — oo.
i=0+1

Therefore, fi — f a.e. Since

k
el < |fi +Z|fi —ficil < gr < gforall ke N,
i—2

it follows that |f| < g a.e. Hence, |fi|P < ¢*, |f|P < ¢P, and |f — fi|P < 2¢?, and by

the Dominated Convergence Theorem,

limf|f—fk|pdx=f lim |f — fx[Pdz =0. o
k—w0 Jq q k—oo

1.3.4 Convergence criteria for L? functions

If {fe}, is a sequence in LP(€2) which converges to f in LP(£2), then there exists a
subsequence {ka }]O.Czl such that f, — f a.e., but it is in general not true that the
entire sequence itself will converge pointwise a.e. to the limit f, without some further

conditions holding.
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EXAMPLE 1.28. Let §2 = [0, 1], and consider the subintervals
1 1 1 1 2 2 1 1 2 2 3 1

3
[075]7[571]7[073]v[§’§]7[§71]7[0q]7[17g]v[gq]’[gal]a[ng]a“'
Let fi, denote the indicator function of the k' interval of the above sequence. Then

| frllr () — 0, but fi(x) does not converge for any x € [0, 1].

EXAMPLE 1.29. Set Q = [0,1], and for k € N, set fj, = kl[o,%]‘ Then f;, — 0 a.e. as

k — o, but | fi[ 11 = 1; thus, fi — 0 pointwise, but not in the L' sense.

THEOREM 1.30. For 1 < p < oo, suppose that {fi}i, < LP(Q) and that fr, — [ a.e.
1 i U fulusioy = [ lusiay then fi— f in L(2).

1
Proof. Given a,b > 0, convexity implies that (aTH)) 5( P+ bP) so that (a + b)P <

2P~ 1(a? + bP), and hence |a — b|P < 2P7!(|a|? + |b|P). Set a = fi, and b = f to obtain
the inequality
0< 27N (Iful? + |F17) = [fi = £IP-

Since fr(x) — f(x) a.e

2 [ Ifpde = [ lim (2SR +10P) - 1o - 7P)ds

Q Q k—o0
Thus, Fatou’s lemma asserts that
2 [ |fPde <timint | (715D + 1P - 1 - ) da
Q k=0 Jo
—1f fPdz + 277! Jim J | fk|pdx+nmmf<_f i~ fida)
Q k=0 Q
-2 | |fpde —timswp f \fe — fPda.

As f | f|Pdx < o, the last inequality shows that lim sup f |fr — f|Pdx < 0. It follows
Q Q

k—o0

that lim sup J |fr — fIPdx = liminf f |f — f]Pdx = 0, so that lim f \fr. — f|Pdx = 0.
k- JQ k= Jo k=0 Jo
a

1.3.5 The space L*()

DEFINITION 1.31. With | f| =) = inf {M = 0] [f(z)] < M a.c.}, we set

L2(Q) = {f : @ > R||f[le@) < oo}
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THEOREM 1.32. (L®(Q), | - |z»)) is a Banach space.

Proof. Let {fx}, be a Cauchy sequence in L*(Q). It follows that |fy — fi| <
| fx — felLo() a.e. and hence f, — f a.e., where f is measurable and essentially
bounded.

Choose € > 0 and N(e) such that ||fy — fil|r=@) < € for all k,¢ > N(e). Since
|fre(x) — f(2)| = zlinolo |fx(x) — fo(z)| < € holds for almost every x € 2, it follows that
I fr — flle=() < € for k = N(e), so that | fi — f|Le@) — 0. 0

1.3.6 Comparison

REMARK 1.33. In general, there is no relation of the type LP(2) < L%(f2). For
example, suppose that Q@ = (0,1) and set f(z) = z 3. Then f € L'(0,1), but
f ¢ L*(0,1). On the other hand, if Q = (1,00) and f(z) = 7!, then f € L*(1, ),
but f ¢ L'(1,00).

LEMMA 1.34 (L? comparisons). If 1 <p < g <r < o, then (a) LP(2) n L"(Q) <
Li(QY), and (b) L1(2) < LP(Q) + L"(R2).

Proof. We begin with (b). Suppose that f € L%, define the set E = {x e Q : |f(x)| =

1}, and write f as

Our goal is to show that g € LP(2) and h € L"(R2). Since |g|P = |f|P1g < |f|!1g and
|h|" = |f|"1ge < |f|?1ge, assertion (b) is proven.

For (a), we prove Lyapunov’s inequality:

(T

Holder’s inequality can be stated as follows: {,g¢*hidz < ({,gdz)’ (§, hdx)t for
s+t—1 We thus set g = [f|P, h = |f|" with s = {= and t = ZL. Notice, then, that
g°ht = | f]?, which completes the proof. o

THEOREM 1.35. If u(2) < oo and q¢ > p, then L1(2) < LP(2).
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Proof. Consider the case that ¢ = 2 and p = 1. Then by the Cauchy-Schwarz

inequality,
L flde = f 1 Lde < | f] o /a0

The general case follows from Hdélder’s inequality. O

1.3.7 Approximation of L?(2) by simple functions

LEMMA 1.36. Ifp € [1,0), then the set of simple functions f = > a;1g,, where

i=1
each E; is a subset of R™ with pu(FE;) < o, is dense in LP(Q)). (Note that 1g denotes
the indicator function for the set E, so that 1g(x) =1 for x € E and 1g(x) = 0 for
xe E°.)

Proof. It f € LP(Q2), then f is measurable; thus, there exists a sequence {¢y}72, of

simple functions, such that ¢, — f a.e. with
0<[¢n] <|gof < <|f;

that is, ¢ approximates f from below.

Recall that [¢r — f|P — 0 a.e. and |¢p — f|P < 2P| f|P € L(Q), so by the Dominated
Convergence Theorem, [¢ — f| zr@) — 0.

Now, suppose that the set E; are disjoint; then by the definition of the Lebesgue

integral,
k
J Phdr = Z la;|Pu(E;) < oo.
Q i=1

If a; # 0, then p(E;) < oo. o

1.3.8 Approximation of LP({2) by continuous functions

LEMMA 1.37. Suppose that Q < R is bounded. Then €°(2) is dense in LP(2) for
pell,x).

Proof. Let K be any compact subset of €). The functions

1

= °(Q tisfy Fir,<1
1+€dist(m,K)€(g( ) satisly Froe< 1,

FK,g (ZE)
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and decrease monotonically to the characteristic function 1. The Monotone Conver-

gence Theorem shows that
Frx,o— 1 in LP(Q), 1<p< 0.
Next, let A < Q) be any measurable set. Then
p(A) = sup {u(K)| K = A, K compact} .

It follows that there exists an increasing sequence of K; of compact subsets of A such
that A(A\J K;) = 0. By the Monotone Convergence Theorem, 1x, — 14 in LP(Q)
J

for p € [1,0). According to Lemma each function in LP(€2) is a norm limit of

simple functions, so the lemma is proved. O

1.3.9 Approximation of L?({2) by smooth functions

For €2 € R open, for € > 0 taken sufficiently small, define the open subset of {2 by
Q. = {z € Q] dist(z,09) > €}
DEFINITION 1.38 (Mollifiers). Define n e €*(R") by

(z) = Cel#P=D7"if |z] < 1
M) = 0 if Jzl>1

with constant C' > 0 chosen such that f n(x)dx = 1.
Rn

For € > 0, the standard sequence of mollifiers on R" is defined by

ne(x) = € "nlx/e),

and satisfy | n.(z)dz =1 and spt(n.) < B(0,¢€). Note that n. € €°(R").
Rn
DEFINITION 1.39. For 2 < R" open, set

Lp

loc

(Q) ={u: Q- R|ue IP(Q) VQccQ},

where Q=) means that () is compactly contained in €2, i.e., there exists a compact
set K such that Q) = K < Q. For example, K could be Q.
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DEFINITION 1.40 (Mollification of L? functions for 1 < p < ). For f € L} (), we
define its mollification by

Jo=nxf in Q.
so that

f(z) = L ne(r —y) fly)dy = f ne(y) f(x —y)dy YVxeQ..

B(0,¢)

LEMMA 1.41 (Commuting the derivative with the integral). Let 2 € R" denote an
open and smooth subset. Let (a,b) € R be an open interval, and let f : (a,b) x Q@ —> R
be a function such that for each t € (a,b), f(t,-) : Q@ — R is integrable and i—{(t,x)
exists for each (t,z) € (a,b) x Q. Furthermore, assume that there is an integrable

function g : Q — [0,00) such that sup ’ o (t,z)| < g(x) for all x € Q. Then the
te(a,b)

function h defined by h(t J f(t,x)dx is differentiable and the derivative is given
by

dt dtfftxdx_fﬁ (t,z)d
for each t € (a,b).

Proof. Let tg € (a,b). To show that %(tg) exists, consider the limit of the sequence

of difference quotients
L h{t) — b)
im ————=

n—0 tn - tO ’

where t,, — tg as n — 0. We see that

h(t h(to) tn, f(to,
0 J f(tn, ) I)dx.
t — o t, —to

With
Fn<$) - f(tn,$) — f(t()vx) ,
t—to

it follows that lim F, (x) = gf (to, ) for all z € Q.

By the mean value theorem, there exists a point &, € (o, t,) such that

of

Fn(l') = g(&na I’)

, we have (by hypothesis) our dominating

. 0
and since \i(gn, )| < sup ‘ (t,x)
ot te(a,b)
function; hence, by the domlnated convergence theorem, it follows that
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lim hlta) = hito) = f lim F,(x)dx = f a—f(to,x)dx. o

n—00 t, — tO n—00

THEOREM 1.42 (Mollification of L?(Q2) functions). If forp e [1,0), f € L} (Q) and
fe=mn.* f denotes the mollified function, then

(A) fee € (Q);
(B) f*— f a.e. ase—0;
(C) if in addition f € €°(Q), then f¢ — f uniformly on compact subsets of §;

(D) fe— fin L} ().

loc

Proof. Part (A). Continuity of f€ follows from the Dominated Convergence Theorem,
and the fact that n.(z —y)|f(y)|1B(a,e) is integrable. The fact that all partial derivatives
of u¢ of all orders are continuous follows from repeated application of Lemma [[.41} To

see that of
690,-

(x) exists and is continuous for each z € Q. and i = 1, ...,n, we show that

O (2 = f e — ) fy)dy.

al’z n al’z

From Definition [1.38] 7. is a smooth function; hence, since f € Li (Q), we see that

loc

Y — aii ne(z — y)u(y) € LL .(Q) uniformly in z € w for any set wc=). Application
of Lemma then shows that f¢ € ¢'(.). A similar argument shows that all
higher-order partial derivatives of f¢ are continuous, and hence that f€e €*(€,).
Step 2. Part (B). By the Lebesgue differentiation theorem,

1
lim ——— fly) — f(x)|dy =0 for a.e. xz €. 1.3
AT TE B(M)! (y) — f(=)] (1.3)

Choose z € € for which this limit holds. Then

f2) — f()] < j nea —)|f ) — f(@)ldy

B(xz,e)

L syl - f@)ldy

n
€ JB(z.)

C
< —\B(:L’,e)\ JB(%E) |f(z) — fly)ldy — 0 as e—0. (1.4)
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Step 3. Part (C). We choose another set w such that Qccwcc Q. Since f is
continuous on €2, it follows that f is uniformly continuous on w. We choose ¢ > 0
small enough so that f€ is well defined on ). Then the limit in holds uniformly
for 2 € €). The inequality then shows that f<(z) — f(z) uniformly on €.

Step 4. Part (D). For f € L? (Q), p € [1,0), once again choose open sets

loc

Qccwee Q; then, for € > 0 small enough,
1 Ve@y < 1l -
To see this, note that
s el
B(x,e

= JB( )ne(x —y) PPy (z — )P f(y)|dy

(»—1)/p 1/p
< ( f Ne(x — y)dy) (J ne(x —y)|f (y)\pdy> ,
B(x,€) B(z,€)

so that for e > 0 sufficiently small

Jrepa< ] [ e nisras

< L |fw)l (JB@@ ne(x — y)dﬂf) dy < L |f(y)lPdy .

Since by Lemma [[.37, €°(w) is dense in LP(w), choose g € €°(w) such that
If = gllLr(w) < 05 thus

17 = Floo@y <1 =9 @y + 19° = 9l o@) + 19 = fllive
<2[f = glrrw) + 19° = 9l oy <20+ [9° = gl rrw) - 2
1.4 Convolutions and Integral Operators

If u : R* — R satisfies certain integrability conditions, then we can define the operator

K acting on the function u as follows:

(Ku)(z) = f Bz, y)u(y)dy

Rn
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where k(z,y) is called the integral kernel. The mollification procedure, introduced in
Definition [1.40}, is one example of the use of integral operators; the Fourier transform

is another.

DEFINITION 1.43. Let Z(LF(R"™), LP(R")) denote the collection of bounded linear
operators from LP(R") to itself. Using the Representation Theorem [1.51} the natural
norm on A(LP(R"), LP(R™)) is given by

HKH@(Lp(Rn),Lp(Rn)) = sup sup ‘ J Kf ’

”fHLP(]Rn) 1|gllza@mny=1

THEOREM 1.44. Let 1 < p <o, (Ku)(x) = | k(z,y)u(y)dy, and suppose that
]Rn

J |k(x,y)|dx < Cy Yy e R" cmdj |k(x,y)|dy < Cy Vo eR™,

n

where 0 < Cp,Cy < 0. Then K : LP(R*) — LP(R") is bounded and

1 p—1

| K e @)ooy < CFCy7
In order to prove Theorem [1.44] we will need another well-known inequality.
LEMMA 1.45 (Cauchy-Young Inequality). [f1 + L 1, then for all a,b = 0,
p q

al b
ab < —+ —.
p q

Proof. Suppose that a,b > 0, otherwise the inequality trivially holds.

ab = exp(log(ab)) = exp(loga + logb) (since a,b > 0)

1 1
= exp (— log a? + — log bq)
p q

1 1
< —exp(loga”) + — exp(log b?) (using the convexity of exp)
p q

ab b

T p g

. 1 1
where we have used the condition — + -= = 1. o
p q
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LEMMA 1.46 (Cauchy-Young Inequality with 4). [f1 + L 1, then for all a,b = 0,
p q
ab < daf + Csb? d>0,
with Cs = (dp)~9/Pqg~!

Proof. This is a trivial consequence of Lemma by setting

b
— . p__ 7 o
ab = a - (dp) o)
|a

p
Proof of Theorem[1.44] According to Lemma [1.45, |f(y)g(z)| < /)l + 9(@) SO

that ! !
‘JRHJD z,y)f(y)g(z )dydx‘

<[ [ "”;%”dmwy)rpdy o[ ey yar

Ch Cy
< ?Hf”ip(g) + 7”9”%(9) :

To improve this bound, notice that

URJ (2,9)f ()dydx‘
fﬂfﬂ'”yd\tf \pd+fnfn R Y g1 g ()0

L ar | Gt
: el L gl = Ft

Find the value of ¢ for which F'(¢) has a minimum to establish the desired bounded. o

THEOREM 1.47 (Simple version of Young’s inequality). Suppose that k € L'(R™)
and f € LP(R"). Then

Ik fllzorny < 1Kll2r oy | £l Lo gn) -

Proof. Define
Kalf) = ke f = | b =)0y,

n

Let Cy = C = |k|Li(re) in Theorem [1.44] Then according to Theorem [1.44] K :
LP(RH) — LP(RH) and HKkH% Lr Rn Lp Rn < Cl O
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Theorem [1.44] can easily be generalized to the setting of integral operators K :

LY(R") — L"(R") built with kernels k£ € LP(R") such that 1 + ol + L Such a
r p q
generalization leads to

THEOREM 1.48 (Young’s inequality for convolution). Suppose that k € LP(R") and
fe LYR"). Then
1

1 1
Hk* fHLT(Rn) < HkHLp(Rn)HfHLq(Rn) fOl" 1 + ; = 5 + 5 . (15)

1.5 The Dual Space and Weak Topology

1.5.1 Continuous linear functionals on LP()

Let LP(€)" denote the dual space of LP(€2), consisting of all continuous linear functions

¢: LP(Q) — R. For ¢ € LP(Q2)’, the LP(2)"-norm of ¢ is defined by
[0lry = sup [o(f)]

[flLp)=1

This is the so-called operator norm which we shall sometimes denote by ||¢||op

THEOREM 1.49. Let pe (1,0:0], ¢ = Ll For g € L1(Y), define F, : LP(2) — R as

P
&m=fme
Q
Then F, € L(Q) and | Fylop = |9l oo,

Proof. The linearity of F, follows from the linearity of the Lebesgue integral. By-
Holder’s inequality,

uwﬂ=me

so that  sup  [Fy (f)] < 9]0y
1oy =1
For the reverse inequality, we first consider the case that p € (0,0], and set

f = |g|”'sgn(g); then, f is measurable and in LP(€2) since |f|P = |f|7T = |g|? and
since fg = |g|?,

£ = [ gote = [ tgtae = ([ o)

= ([ 15z ([ lolar)* = 151welaliecn

<Luwm<ﬂm@mm@,
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Fy(f) ( / )
so that ||g| 14 = J =F | —— | <|F,|on-
H HL ) Hf|LP(Q) I HfHLP(SZ) ” g” ’

Next, we consider the case that p = 1 and ¢ = c0. We can assume that g # 0 a.e, for
otherwise, the equality is trivial. For e > 0, let B, = {z € Q : |g(x)| = ||g] 12 — €},

and set f(z) = 1&(@%- Then || f]z1(q) = 1 and

1

= W . lg(z)dz = |g| L= — €.

Lf<x>g<x>dx

O

REMARK 1.50. Theorem shows that for 1 < p < oo, there exists a linear
isometry g — Fj, from L9(2) into LP(2), the dual space of LP(€2). When p = oo,
g— F,: L}(Q) — L™(Q)’ is rarely onto (L*(Q)' is strictly larger than L*(Q)); on the
other hand, if the measure space 2 is o-finite, then L®(Q) = L'(Q)".

1.5.2 A theorem of F. Riesz

THEOREM 1.51 (Representation theorem). Suppose that 1 < p < o0 and ¢ € LP(2)'.
Then there ezists g € L1(Q2), q = 5 ? 1 such that

b (f) = JQ fodr Y feINQ),

and ||¢]op = |9/ La(0)-

COROLLARY 1.52. For p e (1,0) the space LP (Q, ) is reflexive; that is, LP(Q)" =
LP(Q).

The proof Theorem crucially relies on the Radon-Nikodym theorem, whose

statement requires the following definition.

DEFINITION 1.53. If y and v are measure on (€2, A) then v « p if v(E) = 0 for
every set F for which p(F) = 0. In this case, we say that v is absolutely continuous

with respect to pu.

THEOREM 1.54 (Radon-Nikodym). If p and v are two finite measures on €; that is,
w(2) < oo, v(Q) < w0, and v < p, then

L F(z)dv(z) = L F(z)h(x)du(x) (1.6)
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holds for some non-negative function h € L*(2, u) and every positive measurable

function F.

Proof. Define measures a = p + 2v and w = 2u + v, and let H = L*(Q, ) (a Hilbert
space) and suppose ¢ : L? (Q, @) — R is defined by ¢ (f) = J fdw. We show that ¢
Q

is a bounded linear functional since

[o(f)| = Uﬂfd(2u+y)‘ < L|f|d(gu+4y) _ 2L|f|do‘
< ”fHLQ(a:,a)\/m.

Thus, by the L? Riesz representation theoremEL there exists g € L*(Q, a) such that

o = | f=| foda.

which implies that

| #2g =1 = | s~ 9dn. (1.7)

Q Q

Given 0 < F' a measurable function on €2, if we set f = and h = 279
2g —1 2g —1

then J Fdv = J Fh dz which is the desired result, if we can prove that % < g(x) <2
Q Q
Define the sets

. 11 ) 1
Ek:{xe§2|g(a:)<§—z} and FE z{er]g(az)>2+E}.
By substitutingfz1E£,j=1,21n ,We see that
w(ED) =v(El) =0forj=1,2,

from which the bounds 1/2 < g(z) < 2 hold. Also pu({z € Q|g(z) = 1/2}) = 0 and
v({z € Q|g(x) = 2}) = 0. Notice that if F' =1, then h e L*(Q). o

REMARK 1.55 (The more general version of the Radon-Nikodym theorem). Suppose
that u(Q) < oo, v is a finite signed measure (by the Hahn decomposition, v = v~ +v7)
such that v « p; then, there exists h € L*(£2, u) such that J Fdv = J Fhdu.

Q Q

3The L? Riesz representation theorem is proved using the orthogonality relations that the L2
inner-product provides, together with the Hahn-Banach Theorem.
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LEMMA 1.56 (Converse to Holder’s inequality). Let u(2) < oo. Suppose that g is
measurable and fg e L*(Q) for all simple functions f. If
M(g) = sup { Jfgd,u Hf is a simple function} <, (1.8)
[flzp@)=1 Q
then g € L9(), and |g| L) = M(g).

Proof. Let {¢r};2; be a sequence of simple functions such that ¢, — ¢ a.e. and

|pr| < gl Set
o] sgn(oy)

-1
”Cka%q(Q)
so that | fi|zr) = 1 for p = qi% By Fatou’s lemma,

fr =

l9] zae) < liminf | dg|Le) = lim inff | fedr|dp .
k—o0 k- Jq
Since ¢ — g a.e., then
lg]za) < hmian | fedldp < hminJ | frgldp < M(g).
The reverse inequality is implied by Hélder’s inequality. O

Proof of Theorem [1.51] We have already proven that there exists a natural inclusion
t: L9(Q2) — LP(QY) which is an isometry. It remains to show that ¢ is surjective.

Let ¢ € LP(§2)" and define a set function v on measurable subsets E < Q) by
v(E) = f lpdv =: ¢(1g).
Q
Thus, if u(E) = 0, then v(E) = 0. Then

LfW=wu>

for all simple functions f, and by Lemma this holds for all f € LP(Q2). By the
Radon-Nikodym theorem, there exists 0 < g € L*(2) such that

Lfduz JQfgd/L Y fe LP(Q).

ij—me (1.9)

and since ¢ € LP(Q)', then M(g) given by (L.8) is finite, and by the converse to
Holder’s inequality, g € L4(Q), and ||¢]op = M (9) = | 9] ze0)- o
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1.5.3 Weak convergence

The importance of the Representation Theorem is in the use of the weak-*
topology on the dual space LP(Q2)". Recall that for a Banach space B and for any
sequence ¢; in the dual space B', ¢; = ¢ in B’ weak-*, if {(¢;, f) — (¢, f) for each
f € B, where (-, -) denotes the duality pairing between B’ and B.

THEOREM 1.57 (Alaoglu’s Lemma). If B is a Banach space, then the closed unit

ball in B' is compact in the weak -* topology.

DEFINITION 1.58. For 1 < p < o0, a sequence {fi}r; € LP(Q) is said to weakly
converge to f € LP(Q) if

a __Pr
| @t — | f@pots voer@.g - Lo

We denote this convergence by saying that fp — f in LP(Q) weakly.

Given that LP(€) is reflexive for p € (1,0), a simple corollary of Alaoglu’s Lemma

is the following

THEOREM 1.59 (Weak compactness for LP(2), 1 < p < ). If 1 < p < o and

{fr}i2, is a bounded sequence in LP(Q), then there exists a subsequence {fk]. }?;1 such
that fi, — f in LP(Q) weakly.

DEFINITION 1.60. A sequence {fi}>; < L*(f2) is said to converge weak-* to
feL*Q) if

f fr(z)p(x)dx — f f(x)p(x)dx Y¢e LYQ).
Q Q
We denote this convergence by saying that f, — f in L*(2) weak-*.

THEOREM 1.61 (Weak-* compactness for L®). If {fi}"; is a bounded sequence in
L*(Q), then there exists a subsequence {fkj};ozl such that fy, = f in L*(Q) weak-*.

LEMMA 1.62. If fi, — f in LP(Q), then fr — f in LP(Q).
Proof. By Hélder’s inequality,

Lg(fk — fdx| < | fr — flr@ 9z - 0
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Note that if {fx}{_, is weakly convergent, in general, this does not imply that

{fr}72, is strongly convergent.

EXAMPLE 1.63. If p = 2, let {f;};°, denote any orthonormal sequence in L?().

From Bessel’s inequality

L 2
| [ sode] < gl
k=1 v

we see that fp — 0 in L*(Q).

We can often arrive at the same conclusion by more elementary arguments.

EXAMPLE 1.64. Let uy(z) = sin(kx) and let Q = (0,27). In this case the vy — 0 in

L?(0,2m), but this sequence does not converge strongly.
2m

So we must show that f sin(kx)v(z)dz — 0 as k — oo for all v e L?(0,27). By
0
Theorem [1.42] we see that €*([0,2n]) is dense in L?*(0,27) (as the interval (0, 27)

is identified with the circle S! which has no boundary). Thus, we consider our test
function v € €1([0, 27]) so that for some constant M > 0, max (\v(x)] + ‘Z—Z(m)’) <

z€[0,27]
M. Then

27 27
L sin(kz)v(z)dr = —EJO %cos(kx) (x)dx
_ —v(w)cos(kx)2r 1 JQ’T dv
= ’ . + ? dx<x) cos(kx)dx
1 1
< 2 (— 02m) +0(0) + 1 e cos) 2o
C

2m
Employing a density argument, we see that J sin(kz)v(xz)dr — 0 as k — oo for all

0
ve L*0,2m).
On the other hand,

2m T
1
| sin® (k)22 (0,20) = J | sin(kz) — 0]*dz = EJ sin’y dy
0 0
1 . 27k
= ﬂ(y — siny cosy) ;

:7'['7

so that sin(kz) does not converge strongly in L*(0, 27).
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We have just shown that u, — 0 in L?*(0,27), and an interesting question is the
following: what does ui weakly converge to? Example is an example of a more
general fact that periodic functions weakly converge to their average as the wavelength
tends to zero (see Problem [1.13)).

EXAMPLE 1.65. Let f; = sin?(kx) and once again, set Q = (0,27). We will show
that f, — % in L?(0,2m), which is the same as showing that for all v € L?(0, 27),

J " sin®(kz)v(x)de — L - gdx. (1.10)

0
By Lemmall.36] it suffices to prove ([1.10]) for all simple functions v(z), and by linearity
of the integral, we may consider v(x) = 14 (x) for some a € (0,2m). In this case,
(1.10) reduces to

a
f sin?(kx)dx — a :
0 2
and this follows from the anti-derivative formula given in Example [I.64]

There are essentially three types of mechanisms by which a sequence u, — w in
LP(Q2) but uy, + w in LP(2). We have just seen examples of the first mechanism:
oscillation, for which ug(z) = sin(kx) is a nice example. The second mechanism is
concentration, and the sequence uy(x) = k'/Ph(kz) for any fixed function h € LP(R);
for example, letting h(z) = eIl for 2 € R, we see that u;(x) concentrates near the
origin = 0, and has unbounded amplitude as k& — oo. (In fact, as we shall sees later,
this sequence converges to the Dirac measure in the sense of distribution.) The third
mechanism can be termed ‘escape to 0’ wherein ug(x) = h(z + k) for some fixed
h e LP(R).

Returning to example [1.63} we see that the map f — | f|r(o) is continuous, but

not weakly continuous. It is, however, weakly lower-semicontinuous.
THEOREM 1.66. If f, — f weakly in LP(Q), then | f|rr) < liin inf || fi]| zr () -
—00

Proof. As a consequence of Theorem [1.51},

ey = sup || foda| = swp i || fgdo
lgllzay=11JQ lgllpa(y=1""%
< sup liminf | foze@)lg]ze@)
lglLay=1 ©

The inequality follows by noting that lim ‘J fkgda:‘ = liminf ‘J fkgdx‘. o
k—oo | Jo k—0o0 Q
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THEOREM 1.67. If fi, — f in LP(R2), then fi is bounded in LP(S).

Proof. This is an immediate consequence of the uniform boundedness principleﬁ, by
identifying f with an element ¢y of L9(2)’, and using Theorem to conclude that

H¢kHLq(Q)’ = kaHLP(Q)- =

An important result in analysis, known as Egoroff’s theorem, is useful in answering

a variety of questions about convergence of sequences of functions.

THEOREM 1.68 (Egoroff’s Theorem). Suppose that |Q)| < oo and fi(x) — f(z) for
all x € Q. Then for each € > 0, there exists E < Q with |E| < € such that f — f

uniformly on EC.
We use the notation E® to denote the complement of the set F in .

Proof. For each § > 0 and each k € N, we define the subsets

Eg:{erHfj(x)—f(xﬂ>5f0rsomej>k}.

Q0

Since f;(x) — f(x) for all z € Q, it follows that (| EJ = & for each § > 0, so that
k=1

|E2| — 0 as k — oo,

If for each € > 0, we set § = 27%, then there exists a positive integer NN, such that
2~k —k
|ENk | < 27".

We define the set .
E-|JE,
k=1
Then |E| < € and if z € U* and j > Ny, then |f;(x) — f(z)| < 27%, which provides the

uniform convergence on the complement of F. =

4The uniform boundedness principle is a fundamental theorem of functional analysis: Suppose X
and Y are Banach spaces and F is a collection of continuous linear operators from X to Y. If

sup |L(x)|ly < oo for all z € X,
LeF

then

sup | Llgx,y) := sup |L(z)[ly <co.
LeF LeF,|z|=1
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THEOREM 1.69. Suppose that 2 < R" is a bounded domain, and

sup | fill oy < M <o and  fi, — f a.e.

If 1 <p <o, then fr, — f in LP(Q).
Proof. Egoroff’s theorem states that for all € > 0, there exists £ < 2 such that
w(E) < € and f — f uniformly on E*. By definition, f; — f in LP(2) for p € (1,0)
if f (fe — f)gdx — 0 for all g € LY(R), q = Ll We have the inequality

Q p—

)L(fk—f)gdx‘ <JE|fk_ng|dx+JEc \f — £l lg| da.

Choose n € N sufficiently large, so that | fi(z) — f(x)| < § for all z € E*. By Hélder’s

inequality,

| 15 fllolde < 1= s gl < u(Elglance) < C5
E

for a constant C' < 0.

By the Dominated Convergence Theorem, |f; — f|ir@) < 2M so by Holder’s
inequality, the integral over E is bounded by 2M |g| Le(g). Next, we use the fact that
the integral is continuous with respect to the measure of the set over which the integral
is taken. In particular, if 0 < h is integrable, then for all 6 > 0, there exists ¢ > 0
such that if the set E. has measure u(F,) < €, then f hdx < 6. To see this, either

approximate h by simple functions, or use the Dominated Convergence theorem for
the integral f 1g (z)h(z)dz. o
Q

REMARK 1.70. The proof of Theorem [I.69] does not work in the case that p = 1, as

Holder’s inequality gives

f e = fl1gldz < I = Floelgle)
E

so we lose the smallness of the right-hand side.

REMARK 1.71. Suppose that F < () is bounded and measurable, and let ¢ = 15. If
fo — fin LP(Q), then

L filw)d — Lf(x)dx;

hence, if f; — f, then the average of f,, converges to the average of f pointwise.
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REMARK 1.72. If uy, — win LP(Q) and vy, — v in L9(2), then f

URVEdT — J uvdzx.
Q Q

REMARK 1.73. For 1 < p < o0, if u;, — w in LP(Q) and ||uf 1r@q) = klim uk| e (),
_)w
then w, — w in LP(Q2) strongly.

1.6 Exercises

PROBLEM 1.1. Use the Monotone Convergence Theorem to prove Fatou’s Lemma.
PROBLEM 1.2. Use Fatou’s Lemma to prove the Dominated Convergence Theorem.

PROBLEM 1.3. Let  denote an open subset of R™. If f € L'(Q2) n L*(Q), show
that f e LP(Q) for 1 < p < oo. If |Q] < o0, then show that li/m [flze = | fllre. (Hint:
p,/'00

For € > 0, you can prove that the set £ = {x e Q : |[f(x)| > ||f|lL» — €} has positive
Lebesgue measure, and the inequality [|f]z= — €] 1 < |f| holds.) Can you remove

the assumption that || < co?

PROBLEM 1.4. Theorem states that if 1 < p < oo, fe LP, {f,} S LP, f, = f
a.e., and lim | f,||z» = ||f||z», then lim |f, — f|zr — 0. Show by an example that
n—0o0 n—a

this theorem is false when p = oo.

PROBLEM 1.5. Show that equality holds in the inequality
'A< Xa+ (1-A)b, Ae(0,1),a,b=0

if and only if @ = b. Use this to show that if f € L? and g € L9 for 1 < p,q < o0 and
1 1

—+ — =1, then

D q
J‘!fghk6:=|fﬁLpHqu
Q

holds if and only if there exists two constants C; and Cy (not both zero) such that
Cl|f|p = Cg‘g|q holds.

PROBLEM 1.6. Use the result of Problem to prove that if f, g € L3(Q) satisfy

|fm=mm=£fwm=L

then g = |f] a.e.
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PROBLEM 1.7. If for j = 1,2 and p; € [1,0]| and u; € LP/, show that ujus € L’

. 1 1 1
provided that — = — + — and
T p1r P2

Jurus|zr < Junflze |uzf e -
Show that this implies that the generalized Holder’s inequality, which states that if

for j =1,...,m and p; € [1,00] with pl = 1, then
j=1Pj

f iy -+~ ] d < Jaal s -+ - [t
n

PrROBLEM 1.8. (a) Let f, and g, denote two sequences in LP(2) with 1 < p < o
such that f, — f in L?(Q2) g, — ¢ in LP(Q2). Set h,, = max{f,, g,} and prove
that h, — h in LP(Q)), where h = max{f, g}.

(b) Let f, be a sequence in LP(§2) with 1 < p < o0 and let g,, be a bounded sequence
in L*(2). Assume that f, — f in LP(Q2) and that g, — ¢ a.e. Prove that

fngn — fg in LP(Q).
PROBLEM 1.9. Let 1 <p <o and 1 < ¢ < 0.
(a) Prove that L'(Q) n L*®(Q) is a dense subset of L?(€).
(b) Prove that the set {f e LP(Q) n LY(Q) | | f[ ey < 1} is closed in LP().
(c) Let f, be a sequence in LP(Q2) n L%(Q2) and let f € LP(£2). Assume that
fu— £ i L7(Q) and |fulie) < C.

Prove that f e L"(Q2) and that f, — f in L"(Q) for every r between p and g,
r#q.

PROBLEM 1.10. Assume || < o0.

(a) Let fe () LP(Q) and assume that there is a constant C' such that

1<p<o

[ fllr) <C VY1<p<oo.

Prove that f e L*(Q).
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(b) Construct an example of a function fe (] LP(Q) such that f ¢ L*(Q) with
1<p<o
Q=(0,1).

PROBLEM 1.11. Given f e L}(S'), 0 < r < 1, define

EER. 4 ~ 1 (% .
PO = 3 e, f= o | p@)e .

Show that ,
Pof(8) = pr % F(8) = — f pe(6— &) f(0)d6

21 J

where
1—1r?

1—2rcosf +1r2’

p(0) = Y e’ =

n=—0a0

1 21
Show that 27TJ0 pr(0)do = 1.

PROBLEM 1.12. If f € LP(S'), 1 < p < o0, show that
P.f—f in LP(S') as r /1.

PROBLEM 1.13. Suppose that Y = [0, 1]" is the unit square in R" and let a(y) denote

a Y-periodic function in L®(R®). For ¢ > 0, let a.(z) = a(%), and let a = J a(y)dy
Y

denote the average value of a. Prove that a, - @ as € — 0. Prove the same results

for L*(R") replaced by LP(R™), p = 1, and weak-» convergence replaced by weak

convergence.

PROBLEM 1.14. Let f, = \/nl 1). Prove that f, — 0 in L?(0,1), that f, — 0 in
L'(0,1), but that f,, does not converge strongly in L*(0,1).

PROBLEM 1.15. Let X < L'(Q) denote a closed vector space in L!(Q2), and suppose
that X < |J L4(Q2). Use the Baire category theorem (Theorem [B.11)) and the sets

l<g<oo

X, ={feXnL"/Q)] | fllpisim@ <n}, neN,

to prove that there exists some p > 1 for which X < L*(Q).
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PROBLEM 1.16. Let v : 2 —> R denote a measurable function and suppose that for
l<g<p<ow,
wv e LY(Q) Yue LP(Q).

Use the closed graph theorem (Theorem [B.16)) to prove that v e Lv-a ().

PROBLEM 1.17. Prove that the space €2(R") is dense in LP(R") for any p € [1, ).
(We use the notation €2 (R") to denote the space of continuous functions on R™ with

compact support.)

PROBLEM 1.18. For u € €°(R*; R), spt(u) is the closure of the set {z € R* : u(z) #
0}, but this definition may not make any sense for functions u € LP(2); for example,
what is the support 1g, the indicator over the rational numbers?

Let u : R* — R, and let {2, }aca denote the collection of all open sets on R such
that for each « € A, u = 0 a.e. on ,. Define Q2 = (J Q,. Prove that u = 0 a.e. on €.

acA

The support of u, spt(u) is Q°, the complement of Q. Notice that if v = w a.e. on
R®, then spt(v) = spt(w); furthermore, if u € €°(R®), then Q° = {x e Rn ‘ u(zx) # O}.

(Hint. Since A is not necessary countable, it is not clear that f = 0 a.e. on €2, so

find a countable family U,, of open sets in R" such that every open set on R" is the

union of some of the sets from {U,}.)

PROBLEM 1.19. Prove that if u € L'(R") and v € LP(R™) for 1 < p < o0, then

spt(u % v) < spt(u) + spt(v) .

PROBLEM 1.20. (a) Let u € €°(R*) and v € L}

Le(R™). Show that u % v is well-
defined for all x € R™ and that u = v € € (R").

(b) If for k € N, u € €*(R"), then show that u * v € €%(R") and that D®(u % v) =
(D*u) * v for all o € Z% with |a| < k.

PROBLEM 1.21. (a) If u € LP(R") for 1 < p < o0, and u® = 7. % u, show that

u¢ — u in LP(R") as € — 0.

(b) Let €2 denote an open and smooth subset of R*. Prove that €.°(2) is dense in
LP(Q) for 1 < p < .

PROBLEM 1.22. Prove that if v € L}

loe(€2) satisfies Ju(x)v(x)dx =0 forall ve
€* (), then u = 0 a.e. in .

Q
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PROBLEM 1.23. For w : R — R, define the sequence u,(x) = w(z + n).
(a) Suppose that w e LP(R) for 1 < p < o. Prove that u,, — 0 in LP(R).
(b) Suppose w € L*(R). For ¢ > 0, define

Es = {z e R||w(z)| > 6}.

Suppose that w(z) — 0 as || — 0 in the following weak sense: |Ejs| < oo for all
§ > 0. Prove that u, — 0 in L*(R).

(c) For w = 1(g1), prove that there does not exist a subsequence u,, that converges
weakly in L'(R). (Hint. Argue by contradiction, and use a piecewise constant

test function that alternates sign on each adjacent interval.)

PROBLEM 1.24. Let v € L*(R") and let 7. be the mollifiers from Definition [1.3§|
For € > 0 consider the sequence ¥, € L*(R") such that

[te|ro@mny <1 Ve>0 and ¥ — ¢ a.e. in R",

and define
v =0 % (Yeu) and v=1Vu.

(a) Prove that v =~ v in L*(R").
(b) Prove that v — v in L'(B) for every ball B < R".
PROBLEM 1.25.

(a) For u e L*(Q2), 2 < R", prove that there exists a sequence u,, € €.°(2) such
that

1. Hun”LOO(Q) < HUHLOO(Q) for all n e N;
2. up, — u a.e. on {2,

3. U, —uin L(9).

(b) If u = 0 a.e. in 2, show that the sequence u,, constructed above can be chosen

to satisfy
4. u, >0 a.e. in €.

(c) Show that €:°(Q2) is dense in L*(€2) with respect to the weak- topology.



Chapter 2

Introduction to Sobolev Spaces

2.1 Integration Formulas in Multiple Dimensions

The divergence theorem and its corollaries are fundamental to analysis in multiple

space dimensions.

THEOREM 2.1 (Divergence Theorem). Let Q) € R" be a Lipschitz domain; that
is, 0 locally is the graph of a Lipschitz function, and w = (w1, --- ,w,) € €*(Q) with
outward pointing normal N . Then
J divw dx :J w - NdS .
Q o0
Now suppose that f is a scalar ¢'-function, and N = (Ny,--- ,N,). By setting
w = fe;, where e; is the unit vector pointing to the positive x;-axis, then the divergence

theorem implies
f fo, dx = NS
Q o0

Suppose further that f is the product of two € *-functions h and ¢ ; then, the equality

above shows that

J ghy, dx = J ghN'dS — J gu,hdx .
Q oQ Q

This is the multi-dimensional version of integration-by-parts.

Let Q be a domain for which the divergence theorem holds and let u € €’(Q2) and
v € €1(Q)-functions. Then we have Green’s first identity:

J Vo - Vudr + J vAudr = J div(vVu) dx = f v@dS, (2.1)
Q Q 0 oo ON

39
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2 2 _
where A = (jx% + -+ ;;2. Suppose v € €2(Q) as well. Interchanging u and v in
(2.1) and forming the difference of the two equalities, we obtain Green’s second
identity:
ou dv
Au—ulv)de = | |vic —uzclds 2.2
L(v u — ulv) dz LQ VSN T UaN (2.2)

2.2 Weak Derivatives

DEFINITION 2.2 (Test functions). For < R, set
€ (Q) = {ue € Q)] spt(u) € Ve Q},

the collection of smooth functions with compact support. Traditionally 2(€) is often
used to denote €.°(€2), and Z(QQ) is often referred to as the space of test functions.

For u € €'(R), we can define Z—u by the integration-by-parts formula; namely,
XL

fR j—Z(x)sO(x) dx = —Lu(x)j—i(x) dr  Vee€ (R). (2.3)

Notice, however, that the right-hand side is well-defined, whenever u € L{ (R)

loc

DEFINITION 2.3. An element o € N* (nonnegative integers) is called a multi-index.

. g o
For such an a = (ay, ..., a,,), we write D® = 5o Agan and |a| = aq + -+ + Q.
T T
1 n

EXAMPLE 2.4. Let n = 2. If |a] = 0, then a = (0,0); if || = 1, then a = (1,0) or
a=(0,1). If o] = 2, then o = (2,0),(1,1) or (0,2).

DEFINITION 2.5 (Weak derivative). Suppose that u € L{ (). Then v* € L}

loc loc

() is

called the ot weak derivative of u, written v* = D, if

L u(z) Dp(x) dx = (—1)° J v (x)p(x) dx Vpe®r(Q).

Q

EXAMPLE 2.6. Let n = 1 and set 2 = (0,2). Define the function

o 0o <1,
u@) =97 1<r<a.
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Then the function

1 0<s2x<1,
V@) =10 1<r<2,

is the weak derivative of u. To see this, note that for ¢ € € ((0, 2)),

f u(x)fl—i(x) i f xjﬁ@) dr + J2 fl—i(x) dz

0 = Ofol o(z)dx + x;(w) :1 + () :j == fol p(x) da
_ LQU(x)gp(x) d

EXAMPLE 2.7. Let n = 1 and set 2 = (0,2). Define the function

o O <],
u@) =15 J<cr<o.

Then the weak derivative does not exist!
To prove this, assume for the sake of contradiction that there exists v € LL ()
such that for all ¢ € €((0,2)),

fv(x)@(x) iz — — f 2u(x)3—i(x) i

Then O
fzv(x)go(:v) dv = —le;l—‘z(x) dz — 2[2 Zﬁ(x) dz

0 1 X
1

= L o(z)dr —¢(1) + 2p(1) = J;) p(x) dr + (1)

Suppose that {¢;}%, is a sequence in €.°(0,2) such that ¢;(1) = 1 and p;(x) — 0
for x # 1. Then

1= (1) = ij(:v)gpj(x) dz — f pi(x)dz — 0,

which provides the contradiction.
DEFINITION 2.8. For p € [1, w0], define

WP(Q) = {u e LP(Q2) | weak derivative of u exists, and Du € LP(Q)},

where Du is the weak derivative of w.



42 CHAPTER [2. INTRODUCTION TO SOBOLEV SPACES

EXAMPLE 2.9. Let n = 1 and set © = (0, 1). Define the function u(z) = sin L Then
X
cos(1/x)
—

e L}

we L'(0,1) and Z—Z = 1.(0,1), but u ¢ WhP(Q) for any p.

DEFINITION 2.10. In the case p = 2, we set H'(Q) = WP(Q).

EXAMPLE 2.11. Let Q = B(0,1) < R? and set u(x) = |z|~®. We want to determine
the values of a for which u e H'(Q).

3
Since |z|7® = 3] (x;z;)"%2, then d
j=1 ox;

|7 = —alz|7* %z, is well-defined away
from x = 0.

27 1l
Step 1. We show that u € L{ (). To see this, note that J |z|~*dx = J f r~rdrdf <
Q o Jo

o0 whenever a < 2.

Step 2. Set the vector v(z) = —alz|~* %z (so that each component is given by

vi(z) = —alz|7*?z;). We show that
| w@peteas =~ | @@y YoegEBO).
B(0,1) B(0,1)

To see this, let Q5 = B(0,1) — B(0,9), let n denote the unit normal to 0 (pointing
toward the origin). Integration by parts yields

Lé 2| *De(z) dv = J% 6 %p(x)n(z)odl + af 2|~ %z p(z) dz |

0 Qs

2
Since (lsiII(l] 51_0‘J o(z)n(x)dd = 0 if @ < 1, we see that
— 0

limJ |z|"*Dy(x) dleimaJ 2|~ 22 o(z) do
0—0 Qs 0—0 Qs

2m 1
Since f J r~*lrdrdf < o if o < 1, the Dominated Convergence Theorem shows
o Jo

that v is the weak derivative of w.

21 rl
Step 3. v e L2(Q)), whenever f f r=20-2pdrdf < o0 which holds if o < 0.
0 0

REMARK 2.12. Note that if the weak derivative exists, it is unique. To see this,

suppose that both v; and vy are the weak derivative of u on €2. Then f (v1—va)pdr =0
Q

for all p € €7 (Q2), so that v; = vy a.e.
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THEOREM 2.13 (Product rule). For u € W*P(Q) and ¢ € €*(R0), the product
Cue WhP(Q) and
a
D¥(Cu) = DP¢ D P, 2.4
-3 ()% 24

18I<] |

a\ la!
uhere (ﬁ) IREHCEE

Proof. We begin with the case that |a| = 1. We suppose that v is the ath weak

derivative of u. Then, for all test funtions ¢ € €(£2),

| cupreds = | [upr(ce) = u(D )l d = | [=o" —uD(] o,

Q

where we have used the fact that (¢ € €7 (Q).

Having established for || = 1, we now use an induction argument. Assume
that holds for all |a| < ¢ and all functions ¢ € €*(£2). Choose a multi-index o
with |o| = ¢+ 1. Then a = § + ~ for some |G| = ¢, |y| = 1. Then for ¢ as above,

f CuD%p dx —J CuDP (DY) dax = (— lﬂf
Q

B+|7|f

Q

a|f
ol<|B|

alf 3 ( )DUCD"‘ o ]god:v,

lo|<lal

< )D" (DP~uDYpdx
lo]<18]

( )D’V (D°¢DP~u)p dx
<]

( ) DPCDYPu + D"CD"""u]go dx

where p = o + v in the fourth equality, and the fifth equality follows since
(5)(0)-6) D
o—" o o

2.3 Definition of Sobolev Spaces
DEFINITION 2.14. For integers £k > 0 and 1 < p < @

W P(Q) = {u e L, (Q) | D*u exists and is in LP(Q) for |a| < k}.

loc



44 CHAPTER [2. INTRODUCTION TO SOBOLEV SPACES

DEFINITION 2.15. For v € W*?(Q) define

1
ulwerey = (D) IDulfq) for 1< p <0,

jal<h
and
[ulwroe@y = D) 1Dz
jal<h
The function | - [lyr.r(q) is clearly a norm since it is a finite sum of L? norms.

DEFINITION 2.16. A sequence u; — u in WHP(Q) if lim [u; — ulyrsq) = 0.
j—0

THEOREM 2.17. W*P(Q) is a Banach space.

Proof. Let u; denote a Cauchy sequence in W*?(Q). It follows that for all |a| < k,
D%u; is a Cauchy sequence in LP(2). Since LP(€2) is a Banach space (see Theorem
1.32)), for each « there exists u® € LP(Q) such that

D% —u® in LP(Q).

u® = D%.

For each ¢ € €7(Q),

J uD%pdz = lim | uw;D%pdx = (=) lim [ D% dx
Q

— (1) [ s
Q

thus, u® = D% and hence D*u; — D%u in LP(Q) for each |a| < k, which shows that
u; — u in WHP(Q). o

DEFINITION 2.18. For integers k > 0 and p = 2, we define
H*(Q) = Wk2(Q).
H*(Q) is a Hilbert space with inner-product given by

(U, ’U)Hk(Q) = Z (Dau, DaU)L2(Q) .

|| <k
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2.4 A Simple Version of the Sobolev Embedding The-
orem

For two Banach spaces B; and By, we say that B; is continuously embedded in B,
denoted by B; By, if |u|p, < C|ulp, for some constant C' and for u € B;. We wish
to determine which Sobolev spaces W*?(Q) can be continuously embedded in the
space of continuous functions. To motivate the type of analysis that is to be employed,

we study a special case.
THEOREM 2.19 (Sobolev embedding in 2-D). For kp > 2,
max u(@)] < Clulwares  Yue (). (25)
Proof. Given u € €°(12), we prove that for all z € spt(u),
lu(z)| < C|D(x)|r) Vol <k

By choosing a coordinate system centered about x, we can assume that x = 0; thus, it

suffices to prove that
[u(0)] < C|D*u(z)| ey Vlaf <k

Let g € €*([0,%0)) with 0 < g < 1, such that g(z) = 1 for z € [0, %] and g(z) = 0 for

3
vel2,
By the fundamental theorem of calculus,

).

u(0) = —L Orlg(r)u( J 0,1 0rlg(r)u(r,0)]dr
=f0raz[g<> u(r,6))dr = <k_1>!f0 P Mg (r)ulr, )] dr

—1)* 1
— (li _1>1)' Jo k=2 0% g (r)u(r, 0)]rdr .

Integrating both sides from 0 to 27, we see that

_1\k 2l
u(0) = —27;(]{:12 0 Jo L r* 2 0F g (r)u(r, 0)]rdrdd .

The change of variables from Cartesian to polar coordinates is given by

x(r,0) =rcos@, y(r,0)=rsind.
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By the chain rule,

dru(z(r,0),y(r,0)) = d,ucosd + 0 usind,
o2u(x(r,0),y(r,0)) = 02ucos®f + 26§yu cosfsin 6 + @zu sin? @

It follows that 0¥ = 3 a,(6)D*, where a, consists of trigonometric polynomials of
la|<k

6, so that

O = 0 ™ 5, O e

< O asoy Y, 1D%(gw)]e(s.)
la|<k
1 p—1
(k=2) e
< C(J T‘pp712 Td?“) P Hunk,p(RQ).
0

p(k —2)

Hence, we require +1>—1orkp>2. O

2.5 Approximation of W*?(Q) by Smooth Functions
Define Q. = {z € Q| dist(z, Q) > €}.

DEFINITION 2.20. A sequence u; — u in W ?(Q) if u; — u in Wk2(Q) for each
Q= Q.

THEOREM 2.21 (local approximation). For integers k > 0 and 1 < p < o0, let
u =mnexu in €,
where n, is the standard mollifier defined in Definition [I.38. Then
(A) u e €°(Q) for each € > 0, and

(B) u — u in WFP(Q) as e — 0.

loc



Sobolev Spaces W*P(Q) for Integers k = 0 47

Proof. Theorem proves part (A). Next, let v* denote the the a-th weak partial

derivative of u. To prove part (B), we show that Du¢ = n.*v® in Q.. For z € €,

D) = D | e = uldy = | Donle = pyuto)dy
= '“JD"‘ z —y)uly)dy
- | e =)y = (10 0) @),
By part (D) of Theorem [[42, Du — v® in L¥_(Q). -

We next consider the case that (2 is bounded, and some improvements of the above

local approximation result.

THEOREM 2.22 (Global approximation on ). For Q < R® open and bounded, and
forue WHP(Q), 1 < p < o0, there exists functions u; € €*(Q) n W*P(Q) such that
u; — u in WP(Q).

Proof. For k =1,2,3, ..., we define the open set

Q) = {z € Q| dist(z,0Q) > %};

w —
so that Q = [ J €. Next, we define the “annular” regions wy = Qj43\ 1. We choose

k=1
0

an additional open set wyc= € such that Q = | wy.
k=0
Let (j denote a smooth partition of unity subordinate to the cover wy. By Theorem

2.13 Gpu € W*P(Q), and spt((u) S wy. By Theorem [2.21} for each § > 0, we can

choose ¢, sufficiently small so that
U™ =1, * (Cyu)
is smooth and satisfies
€k 5
HU - CkuHWk,p(Q) < W for k = 0, 1, 2, vy

with spt(u®) S Qpys\ Q.
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0 ~
We let v = >} u*. Since for each open set Q=2 there are only finitely many

k=0
0

nonzero terms in the sum, we see that v € €*(2), and since u = >, (yu, for each
k=0
Qcc)
0 0 1
[o = ey < D) Ju* = Gulwesg) <8 St =0
k=0 k=0

By taking the supremum over open sets Qcc Q, we conclude that |v — u|yrr) <.

(]

THEOREM 2.23 (Global approximation on Q). Suppose that @ € R® is a smooth,
open, bounded subset, and that u € W*?(Q) for some 1 < p < o and k € N. Then

there exists a sequence {u;}7, = €*(Q) such that
u; — U in WEP(Q).

Proof. We employ Theorem m (which will be proven below) to obtain an extension
Eu of u such that

Eu = U n Q, and HEUHW’“?(R“) < C”uHW’W’(Q) .

Choose v; € €°(R") so that v; — Fu in W*?(R"), and define u; = v;|g; that is, u; is
the restriction of v; to Q. Then clearly u; € €°((2), and

|luj — ulwro@) < |v; — Eu|wrogey =0 as j— 0. o

REMARK 2.24. Using these global approximation theorems, it follows that the
inequality (2.5)) holds for all u € WP (R?).

2.6 Holder Spaces

Recall that for 2 < R" open and smooth, the class of Lipschitz functions u : 2 — R

satisfies the estimate
lu(z) —u(y)| < Clz —y| Vo,yeQ

for some constant C.
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DEFINITION 2.25 (Classical derivative). A function u :  — R is differentiable at
x € () if there exists f: Q — Z(R*; R) such that

[u(@) —uly) - fl@) (@ -yl |
|z =yl ’

We call f(x) the classical derivative (or gradient) of u(x), and denote it by Du(z).
DEFINITION 2.26. If u : 2 — R is bounded and continuous, then

Jul oy = max |u(x)]

If in addition u has a continuous and bounded derivative, then

lullg1 @) = [ulgo@) + [ Dulgoq -

The Hoélder spaces interpolate between €°(2) and € ().

DEFINITION 2.27. For 0 < v < 1, the space €%7(Q) consists of those functions for
which

HUH%M(Q) = HUH%O(Q) + [U]%O,w(ﬁ) < @O,

where the yth Holder semi-norm [u]%o,w(g) is defined as

() —uly)ly

[u]<g0,»y(Q) = Imax ( ‘:Ij' — y|7

z,yeN
THFY

The space €°7(Q) is a Banach space.

2.7 Morrey’s Inequality

We can now offer a refinement and extension of the simple version of the Sobolev

Embedding Theorem [2.19

THEOREM 2.28 (Morrey’s inequality). Let B, < R" denote a ball of radius r, and

letn <p<oo. Forxz,ye B,

lu(z) —uly)| < Clz —y|'" 7 |Dulios,y  Vue W(B,). (2.6)
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NOTATION 2.29 (Averaging). Let B(0,1) < R*. The volume of B(0,1) is given by

n

a, = Zr “ and the surface area is IS"™| = nav,. We define
r'(g+1)
1
fy)dy = — f(y)dy
B(z,r) AT JB(z,r)

LEMMA 2.30. Let B, € R" denote a ball of radius r and let u € €*(B,) n W'P(B,)
for p > n. Then, with u = J[ u(y)dy, for all x € B,,

T

@ — u(x)| < Cr'™"?| Du| 1o, - (2.7)

Proof. By the fundamental theorem of calculus, for y € B,,

u(y) —u(z) = L iu(:z: +t(y —x))dt = L Du(z +t(y —z)) - (y — x)dt,

dt
so that )
uly) ~ u(w)] < 2 [ [Dulo -+ ey o)t
0
and hence
2r !
[u(y) — u(z)|dy < |Du(z + t(y — z))|dtdy .

r ‘BT| B, JO

It follows that
1
17— u(z)| < Crlnf f \Du(z + t(y — 2))|dtdy
B, JO

1
<Cr'ttr J f |Du(z + t(y — x))|dydt .
0 JB,

We define the change of variable z(y) = « + t(y — «) so that |det D,y| = 1/t". Then

by the change-of-variables formula,
1
|z —u(x)] < Crl_”J J |Du(z)|dz t™"dt.
0 Btr
By Holder’s inequality,

f Du(2)ldy < | Dull oo | Bul V0 < C|Dul o ()",
Btr
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1 1. .
where — = 1 — — is the conjugate exponent to p. Hence,
q p
1
|t —u(x)| < C’rl_”/pHDuHLp(BT) J P < Crl_”/pHDuHLp(BT) :
0
the last inequality following when p > n. o

Proof of Theorem [2.28. Suppose that u € €*(B,). By Lemma m,

|t — u(x)|dy < Crl_n/pHDUHLp(BT) VzeB,,
@ —u(y)|dy < Cr'~"?|Dul oz,  Vye B,

It follows from the triangle inequality that
lu(x) —u(y)|dy < Crl’"/pHDuHLp(Br) Vr,y€ B,. (2.8)

Given any two points =,y € R", there exists a ball B, of radius r = |x — y| containing
2 and y, which proves ([2.6) for u € €*(B,). For ue W'?(B,), we use a Theorem [2.23)

which provides a sequence u € € (B,) such that u¢ — u in WP(B,). o
Morrey’s inequality implies the following embedding theorem.

THEOREM 2.31 (Sobolev embedding theorem for k = 1). There exists a constant
C = C(p,n) such that

[l go.- ) S Cllufwre@s) Vue WHP(R").

P (Rn
Proof. First assume that u € €} (R"). Given Morrey’s inequality, it suffices to show
that max |u| < C|u|w1ir@n). Using Lemma for all x € R,

ju(z)] <

u(z) — J[B(m) u(y)dy‘ + J[B(m) lu(y)|dy

< C|Duo@n) + Clulzr@ny < Clufwiogn
the first inequality following whenever p > n. Thus,
il -3 gy < Clllwiney Ve EAR). (2:9)

By the density of €°(R") in W'P(R"), there is a sequence {u;}72, < €°(R") such
that
Uj = UE€ Wl’p(Rn> .
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By (£, for j. k€N,

Juj — < Clluy — ukllwrr sy -

%0’17%@%“)
Since €*7» (R") is a Banach space, there exists a U € €°7» (R") such that
. 0,1-2 n
u; - U in € »R").

It follows that U = u a.e. in ). By the continuity of norms with respect to strong

convergence, we see that
U)o gy < Clllwsrceny
which completes the proof. O

In proving the above embedding theorem, we established that for p > n, we have
the inequality
|l e rny < Clufwros) - (2.10)

We will see later that (2.10]), via a scaling argument, leads to the following important
interpolation inequality: for p > n,

p—n

]| oo (my < C(n7p)HDuHEP(R“)HuHERH) :

COROLLARY 2.32 (Sobolev embedding theorem kp > n). There exists a constant
C = C(k,p,n) such that
< Clufwrs@n) Vue WEP(RY),

bl g g

O

where n n n
[-]+1-~ if —¢N),

_ p p p

V= N
anya € Rn (0,1) if —eN.

p

Proof. The proof follows immediately as a consequence of Theorem [2.31] applied to

weak derivatives of u. o

Another important consequence of Morrey’s inequality is the relationship between
the weak and classical derivative of a function. We begin by recalling the definition

of classical differentiability. A function v : R* — R™ is differentiable at a point x if
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there exists a linear operator L : R* — R™ such that for each ¢ > 0, there exists 6 > 0

with |y — 2| < § implying that

lu(y) — u(z) = L(y — 2)| < ey — =]

When such an L exists, we write Du(x) = L and call it the classical derivative.
As a consequence of Morrey’s inequality, we extract information about the classical

differentiability properties of weak derivatives.

THEOREM 2.33 (Differentiability a.e.). If Q € R*, n < p < «© and u € W,-(Q),

loc

then u is differentiable a.e. in ), and its gradient equals its weak gradient almost

everywhere.

Proof. We first restrict n < p < oo. By a version Lebesgue’s differentiation theorem,

for almost every x € €Q,

lim |Du(z) — Du(z)[Pdz = 0, (2.11)
r—0 B(z,r)

where Du denotes the weak derivative of u. Thus, for » > 0 sufficiently small, we see
that

J[ |Du(x) — Du(z)[Pdz < €.
B(z,r)
Fix a point z € €2 for which (2.11]) holds, and define the function
we(y) = uly) — u(x) — Du(z) - (y — ).
Notice that w,(z) = 0 and that
Dyw,(y) = Du(y) — Du(z) .

Set r = |z —yl|. Since |u(y) —u(z) — Du(z) - (y — )| = |w,(y) — w,(x)], an application
of the inequality (2.8) that we obtained in the proof of Morrey’s inequality then yields

the estimate
lu(y) — u(z) — Du(z) - (y — 2)| < Cr'"#| Dwy|| o(s e
< CTJ[ |Du(y) — Du(x)|Pdz < Clx — yle
B(z,r)

from which it follows that Du(x) is the classical derivative of u at the point x.
The case that p = o follows from the inclusion W,"2(Q) <= WL P(Q) for all

loc loc

1<p<co. O
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THEOREM 2.34. Let €) denote an open, bounded, and smooth domain of R™ , and let
ue HY Q). Then u is absolutely continuous on almost all straight lines parallel to
the coordinate axes. Moreover, the weak derivatives of u coincides with the classical

derivative of u almost everywhere.

Proof. 1t suffices to assume that Q = {m e R» ’ O<z;<1,1<i< n} , and show that

ox
=v(z)

T
u(x) = f “ (', t)dt +const,
0 n

)

ou

where the integrand is the weak derivative of u with respect to x, .

0%y
Letw={xeRn*1‘0<xi<1,1<i<n—1} so that Q = w x (0,1), and let

(€ € (w) and p € €°(0,1) be test functions. Since v is absolutely continuous in z,, ,
integration by parts implies

fo ol 1) (B)dt = — j v (&' ) p(t)dt

0
where v, denotes the classical derivative of v with respect to z,. Multiplying both

sides by ((z’) and integrating over w, we find that

j o(@)((2)¢ () di = — f 0o (2)C (& )ip () dit
Q Q

By the definition of weak derivative,

| woe@)e ) de = - | S @) ptamn) do
Q Q OTn
Since the classical derivative v, is the same as ;;L, the right-hand side of the two

equalities above are the same; hence due to the fact that the test function ¢ € €°(w)

is arbitrary,

L (w(@', z) — v(a', 20)) ¢ (2n) dzy = 0

for almost every 2’/ € w. As a consequence, by Problem [2.4] we find that

u(z', xy) —v(a’, z,) = a constant independent of z,

which shows that u is absolutely continuous on almost all straight lines parallel the

T,-axis. o
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2.8 The Gagliardo-Nirenberg-Sobolev Inequality

In the previous section, we considered the embedding for the case that p > n.

THEOREM 2.35 (Gagliardo-Nirenberg-Sobolev inequality). For 1 < p < n, set

p* = P Then
n—p

[l po# gy < Cp, )| Duflr@sy  Vue WH(RT).

Proof for the case n = 2. Suppose first that p = 1 in which case p* = 2, and we must
prove that
HU/HLQ(RQ) < CHDUHLl(RQ) Yue (gcl (R2) . (212)

Since u has compact support, by the fundamental theorem of calculus,

L1 T2
U(xl,xg) = f alu(yth)dyl = f 52“@1792)0@2
—00 —00

so that
o0 o0
uan, 2)] < f 21y, 22)|dyn < f Du(yr, 22)|dyn
—00 —00
and
o0 o0
[u(xq, 22)| < J |0ou(z1, y2)|dys < f | Du(x1,y2)|dys .
—o0 —0o0
Hence, it follows that
o0 o0
22 < f | Du(yr, z2)|dn f Du(x, o)l
—00 —00

Integrating over R?, we find that

o0 o0
J J |u(:c1,m2)|2 dx dxy
—00

o0
J J f | Du( Z/l;@)\dylf !Du(iﬁl,yﬁ‘dyz)dfﬁdi@

f J |Du(xy, 22) |dx1dx2>

which is (2.12)).
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Next, if 1 < p < 2, substitute |u|? for u in (2.12) to find that

(J |u|27dx>2<6’7f u|"~ Y Dul de
R2 R2
p*l

p( o
< Oy Dulusge) (| ful¥" ) ”
R2

b

—1
Py ); hence, v = ——, and
—1 2—0p

Choose v so that 2y =

2—p

(f ul#5 dz) ™ < Oy Do)
R2

so that
lul 2o < CpulDulpemny (2.13)

for all u € €} (R?).
Since €*(R?) is dense in W'P(R?), there exists a sequence {u;}?
such that

< 7 (R?)

Jj=1 =

wj —>u in WHW(R?).
Hence, by (2.13)), for all j, k € N,

luj = unll 2o 22 gy S Cpn|Duj — Dug|| 1o e

so there exists U € Lﬁ(Rn) such that

wj—U in L27(RY).
Hence U = u a.e. in R? and by continuity of the norms, (2.13) holds for all
ue Wl’p(Rz). o

Proof for the general case of dimension n. Following the proof for n = 2, we see that

n—1 H <J |Du L1y a5 Yiy ,In)|d’yl>ﬁ
so that

Q0 1
f lu(z f f \Du(azl,...,yi,...,xn)|dy,»> "y
—00 oo i=1
1 oo N 00 1
(J |Du|dy1 _1 f H (J |Du|dyi> " day
(J ]Du|dy1 f J | Dul| dxldyl> ,
=2
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where the last inequality follows from Hoélder’s inequality:.

Integrating the last inequality with respect to zs, we find that
o0 Q0 0 0¢] Q0 %1 Q0 n 1
J J |u(x) |77 dxy dzg < (J J | Dul| dwldy2> " J HI{H dxs ,
—0 J—w0 —00 J—00 —0 ;-1
i#2
where

o 0 oo
L = f |Duldy,, I; = J J | Du|dz,dy; for i = 3,--- ,n.
o -0 J—w

Applying Holder’s inequality, we find that

0 e} 0
f J |u(z)|"T dridxs
-0 J—w
< (J f \Du!daﬁldm) . (J J | Du|dy, dx2> T x
—00 J—00 —00 J—00
n 0 e 6} o0 %
X 1_[ (J J f ]Du] diL‘l dl’gdy,L) o .
i=3 —00 J—00 J—00

Next, continue to integrate with respect to zs, ..., z, to find that
N n 0 Q0 %1
f lu| =T dz < H(J J |Du| dzy - - dy; - - - dxn>n
n i=1 —0o0 —0o0
= (J \Du\alac)E .
Rn

This proves the case that p = 1. The case that 1 < p < n follows identically as in the

proof of n = 2. O

It is common to employ the Sobolev embedding theorems for the case that p = n
and of particular interest is the case that p = 2 in dimension n = 2; as stated, neither
Morrey’s inequality or the Galiardo-Nirenberg inequality can be applied in this setting,

but in fact, we have the following

THEOREM 2.36. Suppose that u e H'(R?). Then for all 2 < ¢ < o,

Julzaey < C/q 1w ge) -

Proof. We first consider the case that u € €°(R?). Let z and y be points in R?, and

write 7 = |z — y|. Let # € S. Introduce spherical coordinates (r,#) with origin at z,
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and let g be the same cut-off function that was used in the proof of Theorem [2.19]
We define U(r,0) := g(r)u(x + re) or equivalently, U(y — z) = g(|x — y|)u(y), were
y =+ re?. Then

tou
U(O,e) = — . E(T, H)dr,
thus .
1U(0,6)] < f |DU (1, 8)|dr .
0
2m
Using the fact that u(z) = % U(0,80)df, we have that
0

1 2r rl
lu(z)] < —J J DU (r, 0)|rdrdd
2 Jo  Jo
1 _
<o | en®)le =yl DU (y)ldy := K= |DUY,

™ JR2

1
where the integral kernel K (x) = 2—13(071)|$\_1.
T
Using Young’s inequality from Theorem [I.48] we obtain the estimate
1 1 1

HK* fHLq(RQ) g HKHL’C(RQ)HJCHLQ(R?) fOI' E - 5 - 5 + 1 . (214)

Using the inequality (2.14) with f = |DU]|, we see that

1

_ &

feliagee) < CLDULen (| ol a)
B(0,1)

1 1 1
= 2 =
ritar|” < C|\u||H1(R2)[&] ‘)

< CIPU e | -

0
When ¢ — 0, % — % and (¢ + 2)% < C/q for some C' > 0 independent of &, so

|u]Larey < Cv/q|ullm (w2 -
Using the density of ;°(R?) in #'(R?) completes the proof. O

In fact, the above theorem holds more generally for v € W1»(R™). Then for all
n<q<oo,
HUHLQ(RD) < O\/aHuﬂwl,n(Rn) .
REMARK 2.37. For functions u € °(R?) such that the support of u is contained

in a set 2 with finite measure, the inequality |u]zem2) < C\/q [©]x1 @2y holds for all
1 < g < o, but the constant depends on [{2|.



Sobolev Spaces W#P(Q) for Integers k = 0 59

Evidently, it is not possible to obtain the estimate ||ufomn) < C|ufw1in@n) with
a constant C' < c0. The following provides an example of a function in this borderline

situation.

EXAMPLE 2.38. Let 2 € R" denote the open unit ball in R?. The unbounded

function u = loglog (1 + i) belongs to WH*(B(0,1)). We show this for the case

|z
that n = 2.
First, note that

L lu(z)|? do = Jjﬂ Ll [log log (1 + %)]Qrdrde,

The only potential singularity of the integrand occurs at » = 0, but according to

L’Hospital’s rule,
1\ 12
lir%r[log log (1 + —>] —0, (2.15)
r— T

so the integrand is continuous and hence u € L?(().

In order to compute the partial derivatives of u, note that

0 o _ f(z) ﬁ

J
where f : R — R is differentiable. It follows that for x away from the origin,

~ log(1 + 1/f) (2] + D]

Du(x) (x #0).

Let ¢ € €°(€2) and fix e > 0. Then

f u(z) 0 (x)dx = — f Cu (x)p(x) de + J uwpN;dS ,
O\B(0) 0x; Q

\B(0,e) Oi 2B(0,¢)

where N = (N, ..., N,,) denotes the inward-pointing unit normal on the curve 0 B(0, €),
so that NdS = e(cos#,sin0)df. It follows that

JQ—Be(O) u(z)Do(x) dx = —J Du(z)p(z) dv

Q—B.(0)

2m
- J €(cosf,sind) loglog (1 + 1)c,o(e, 0)de . (2.16)
0 €
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We claim that Du € L*(2) (and hence also in L'(2)), for

J]Du \%lx—fZWJ sdrdo
0 r(r 4 1) log<1+ )]

1 ! 1
<7 —er + 7 5dr,
o r(logr) 2 r(r +1)2[log (1 +1/r)]

where we use the inequality log (1 + 1) > log1 = —logr = 0 for 0 <r < 1. The
r r

second integral on the right-hand side is clearly bounded, while

1/2 1 —log2 1 . —log2 1
0 ( g ) —o0 —o0

so that Du € L?(Q). Letting ¢ — 0 in (2.16)) and using (2.15)) for the boundary integral,

by the Dominated Convergence Theorem, we conclude that

L (@) Dy () da — — L Du(@)p(x)de Ve €2(Q).

We conclude this section by stating the following theorem which can be proved by

induction.

THEOREM 2.39 (Gagliardo-Nirenberg-Sobolev inequality for W*?(R™)). Suppose
that 1 < kp <n, and D*u e LP(R®). Then u e L+ (R®), and

HuHL%(Rn) < C|D*ul pony for a constant C = C(k,p,n). (2.17)

REMARK 2.40. For 0 < s < g, there exists a constant C' = C'(n, s) such that

< Ol

HUHL%(RH) Hs(Rm) Vue H*(R"). (2.18)

In other words, (|2.17)) holds for the case p = 2 and any real number k € (0, g)

Moreover, with the help of the Morrey inequality (2.8)), we can establish the

following

THEOREM 2.41 (Morrey’s inequality for W*P(R")). Suppose that n < kp, and
we WhP(R®). Then ue ¢F " LITEIT0 (R and

HuH(gk—l—[%],1+[%]—%(Rn) < Olufwrrgny for a constant C = C(k,p,n). (2.19)
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In the rest of this section, a more general version of Sobolev inequality is introduced.

THEOREM 2.42 (Interpolation inequality for W#*P(R")). Let n be a given positive
integer. For j <k s/, 0<0<1andl <q,r <p< o0 satisfying

1 k_ (1_f>+(1_9)<1_l), (2.20a)
p n g n r n
Lot k1 0 (2.20D)
r n p mn_ g n

there exists a generic constant C = C(p,q,r,j, k,t) such that
| D*ul ey < CID Ul | Dol ey Ve WHIRY) A WT(RY). (221)

Proof. We prove the case of ¢ = k + 1, and the general case can be obtained using the

established case and Theorem[2.39, Moreover, we also note that when Lk L R+l

)

p n q n
we must have § = 1 and in this case (2.21)) is a special case of Theorem [2.39 Without
. 1 k_ 1 k+1
loss of generality, we assume that — — — > - — .
p n q n
Let @ be the fundamental solution of —A, x € €*(R") such that y = 1 in a small

ball centered at the origin, and define F' = xy®. Then ((C.10]) implies that

¢ % Au = div(® * Du) = (D®) % (Du) Vue € (RY);

thus by the fact that A® = 0 on R™\{0}, using (C.6)) we further obtain that if
ue € (R"),

u(z) = ~(® % Au)(z) = (D) % (Du))(x)
= ~(DF % Du)(z) — (D((1 ~ )®) % Du)(x)

= —(DF % Du)(x) + A((1 = x)®) % u = —(DF % Du)(x) + (¢ % u)(x)

for some ¢ € €F(R") given by ¢ = A((1 — x)®) = —PAx + 2div(PVy). In other
words, for some ¢ € € (R"),

= —(DF) % (Du) +¢Y*xu  Yue %€ (R"). (2.22)
Therefore, by the fact that DF € L'(R"), (2.22)) shows that for j < k,

Dku _ —(DF) * (Dk+1u) + Dk*jw * Diuy YVue CKCOO(RH)



62 CHAPTER [2l INTRODUCTION TO SOBOLEV SPACES

and Young’s inequality further provides that for all u € €°(R"),

| Dl o eny < Lo | D] pagrny + | D7 pegam | D oy

1 1 1 1 1 C . .
where 1+ - = -+ - =-+ : which is equivalent to that 1 < ¢,r < p < . We note
p q S T

that |(DF)(z)| = O(Jx|'*™) as |z| — 0 and DF has compact support, | DF
- T Therefore, if 1 < s < Ll’

n— n—

”DkUHLp(Rn) < CSHDk+1U||Lq(Rn) + C'HDjuHLr(Rn) Yue %COO(RH) .

LS(RH) < OO

if and only if 1 < s <

Now we initiate the scaling argument. For each u € €°(R") and A > 0, let
v(z) = u(A"'z). Then v e €*(R") so that

| D*0|| 1oy < Csl|D¥ 0| paggny + C| D70|| 1 @en) -
The change of variable y = A~'z then implies that for all A > 0,
| D*u| o gny < O A a0 | D] gy + ONT52 75| DI o geny (2.23)
Since the minimization of the right-hand side of over A > ( cannot be trivial,

(—1+g—%)(k—j+;—9)<0.

p
Bythefactthatl—i—l=1+land1<s<L,Weconcludethat 1421 <0;
p q s n—1 q p
thus .
. n n ) 1 7 1 k
k—j7+———>0 orequivalently, ——=>-——.
rop r n p n
For A, B, o, 3 > 0,
min(AX" + BA~) = C(a, 3) A=+ Bats ; (2.24)
>

n

thus with the assignments A = C'|Diu| 1rgny, B = Cs|| D | paqrny, o = k—j+ 2 >
and 8 = T 1in (2.24 , we obtain that
p q

| D ull pony < C D] o geny | D7 e ey
k—j+3—2
forg= 2 - "I p
atf  k—j+1-0+73
Lettingl—lza,l—kJr zrandl—ﬁzﬁz, then 0 > k > 7 (which validate
r n q n p n
2.20b)) 0 = Z—": thus 0 < 6 < 1 and
o—T
1 1 1 ] — — — 1
9(7_/<:+ )_{_(1_9)(7_1)20 Ko B TU:KZ(O' T)ZH:i_E‘ .
q n r n o—T o—T o—T p n



Sobolev Spaces W#P(Q) for Integers k = 0 63

2.9 Local Coordinates near 0f)

Let Q < R" denote an open, bounded subset with ¢'-boundary, and let {U,}5,
denote an open covering of 0€2, such that for each ¢ € {1,2,..., K}, with V, = B(0, 1)
denoting the open ball of radius 7, centered at the origin, V, = V, n {z, > 0} and
V, =V {z, <0} denoting the upper and lower half of Vy, respectively, there exist
¢'-class charts 19, which satisfy
YoV — U, is a €' diffeomorphism
OV, ) = Uy 0 N2, (2.25)
Ve(Ve n{zy =0}) =Upy 1 09

2.10 Sobolev Extension and Trace Theorems

Let 0 € R" denote an open, bounded domain with €'-boundary.

THEOREM 2.43. Suppose that Q) = R" is a bounded and open domain such that

Q= Q. Then for 1 < p < oo, there exists a bounded linear operator
E:Wh(Q) — WP(R")

such that for all u € WP (Q),

1. Fu=wu a.e. in §;

2. spt(Bu) = Q;

3. [|Euwir@ny < Clullwrr@) for a constant C' = C(p, 2, Q).
THEOREM 2.44. For 1 < p < o, there exists a bounded linear operator

T W(Q) — LP(0Q)

such that for all u e WHP(Q)
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1. Tu = uloq for all ue WHP(Q) n €°(Q);

2. |Tulroq) < Clu[wirq) for a constant C = C(p,Q).
Proof. Suppose that u € €1(2), z € 09, and that dQ is locally flat near z. In particular,
for r > 0 sufficiently small, B(z,r) n 0Q < {x, = 0}. Let 0 < £ € €°(B(z,r)) such
that £ = 1 on B(z,r/2). Set I' = 0Q n B(z,7/2), B*(2,17) = B(z,r) n Q, and let
dxy, = dri--- dry—1. Then

[ | eupdn -] T(up)a
r {xn=0} B+(Z,7’) n

< —f 08 |ulP dx — pf £\u\p_2ua—udaj
B+ (z,r) 0y B+ (2,26) Oy

ou
0Tn

<oj P dz + C|fuf™
Bt(z,r)

L7 (B (21)) Lo(B+ ()

<C (|u? + |Dul?) dz . (2.26)
B+ (z,r)

On the other hand, if the boundary is not locally flat near z € 0€2, then we use a
¢'-diffeomorphism to locally straighten the boundary. More specifically, suppose that
z € 0Q n Uy for some € {1,..., K} and consider the ¢'-chart J, defined in (2.25).
Define the function U = w o ¥y; then U : V;7 — R. Setting I' = V, n {z, = 0}, we see
from the inequality that

f PP day, < cgf (U + | DUJP) dz .
T +

4
Using the fact that DV, is bounded and continuous on V,", the change of variables

formula shows that

f |u|pdS<Cgf (ul? + |Dul?) dz .
UpuoQ uf

Summing over all £ € {1, ..., K} shows that
f ufPds < CJ ([ul? + |Dul)dz. (2.27)
o9 Q

The inequality (2.27) holds for all u € €*(Q). According to Theorem [2.23| for

u € WHP(Q) there exists a sequence {u;}%2, < €*(Q2) such that u; — u in W(Q).

By inequality (2.27)),

|7, — Tui|r o) < Cllur — ujllwre)
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so that 7u; is Cauchy in LP(0€2), and hence a limit exists in LP(0€2). We define the

trace operator 7 as this limit:
lig 7 = 741500 = 0.

Since the sequence u; converges uniformly to u if u € €°(€2), we see that Tu = u|sq

for all u e WhP(Q) U €°(Q). 0

Sketch of the proof of Theorem [2.43| Just as in the proof of the trace theorem, first
suppose that u € €*(Q) and that near z € 0Q, 9 is locally flat, so that for some r > 0,
0QUB(z,1) € {x, = 0}. Letting Bt = B(z,r)u{z, = 0} and B~ = B(z,r)u{z, <0}

, we define the extension of u by

i(x) = u(z) if v e Bt
wEr= —3u(xq, .., Tn_1, —xn) + du(1, ooy Ty1, —2,/2) ifx e B

Define u* = u|p+ and v~ = u|p-.

It is clear that u™ = u~ on {z, = 0}, and by the chain rule, it follows that

ou~ ou~ ou~ Ty
= ey — -2 vy ——
axn (Qf) 3 5;17n (xla ) zn) axn ('xla ) 2 ) ’
au"' ou~ . _ 1 .
so that 5o~ A On {z, = 0}. This shows that u € €' (B(z,r)). using the charts
Tn Tn

¥y to locally straighten the boundary, and the density of the €*(Q) in W'P(), the

theorem is proved. o

Later, we will provide a proof for higher-order Sobolev extensions of H*-type

functions.

2.11 Integration by parts for functions in H'()

We can now state the following theorem which is a generalization of (2.3) and the

divergence theorem.

THEOREM 2.45. Suppose that Q € R™ is a bounded domain with €*-boundary. Then

for each i€ {1,--- n},

J auvdxzj quidS—Juav dx Vu,ve H'(Q).
ani 00 Q 53}@'

o
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Proof. By Theorem [2.22] there exists {ug}i”,, {vr}i2, S €*(Q) n H(Q) such that
ur, — u and vy — v in H'(Q). Moreover, Theorem implies that u; — u and

vy, — v in L*(0Q). Therefore, the divergence theorem implies that

J Ju vdr = lim aukvk dr = lim [J upVEN; dS — aukvk dx]
=J quidS—J auvd:ﬁ. o
o0 o 0

2.12 The subspace W,”(Q)

DEFINITION 2.46. We let W,”(Q) denote the closure of €2(Q) in W*(1).

THEOREM 2.47. Suppose that Q < R® is bounded with €'-boundary, and that
ue W (Q). Then

we WyP(Q) if and only if Tu=0 on 0.

Proof. We first assume that u € W,"(Q) and prove that 7 = 0 on 0. Since
u € WyP(Q), there exists {u}?, € €*(Q) such that u, — u in W(Q). Since
7 WhHP(Q) — LP(09) is bounded,

||TUHLP(Z7‘Q) = 131_1& ||TUkHLp(aQ) =0.

Next, we establish that u € W, (Q) provided that 7u = 0 on dQ. Let {U}k,
denote an open covering of d€2 such that for each £ € {1,2, ..., K}, there exist ¢'-class
charts ¥, given by (5.4)) which satisfy that

e B(0,7,) € R™ - Uy 1 Q is a €'-diffeomorphism .

Let Uy be such that {U}f, forms an open cover of 2, and let {&}/, denote a

partition of unity subordinate to this open cover; that is, for each ¢ € {0,1,--- | K},
K

0 <& <1 and spt(&) € Uy, as well as ] & = 1. We then construct a new partition
=0

of unity {(,}{*, subordinate to {U,}=_, by

&

TSR e
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so that /¢, € €°(R") for all £ € {0,1,--- ,K}. For a given u € W,?(Q), we define
u® = \/C(uody). Then u® e WHP(R:) and Tul® = 0 for all £ € {1,--- ,K}. By
definition of the trace, for each ¢ there exists a sequence {u,(f)}szl < €°(R%) such
that vl — u® in WP(R?) and 70" = u{”|ga1 — 0 in LP(R*!) as k — oo. Note

that for x; € R*! and z, > 0,

ug) (T, 2q) = u,(f)(a:h, 0) + J ugzl(xh, t)dt;
0

thus Holder’s inequality implies that
¢
J ‘u;)(xh,xn)’p dxy,
Rn—1

<C ” ’ul(f)($h,0)|pdxh+l’g_lj J D (e, 1) dat ]
Rr—1 0 Rn—1

Passing to the limit as k — oo, by the fact that ul(f) — u® in WLP(R2) and Tu,(f) — 0

in LP(R*1) we find that
J ]u(e)(xh,xnﬂp dxy, < C’xfl_lf f !Du(z)(xh,t)rj dxypdt . (2.28)

Rn—-1 0 Rn—1
Let x € €°(R.) satisfy

x=1on [0,1], x=0 on [2,00), and 0<x<1.
Define xx(x) = x(kz,) for z € R} as well as vl(f) = (1 — x)u'®. Then using |D

J ‘Dvl(f)(a:) — Du® (:L‘)‘p dx
R}

<[], P pu®wlp drs | 1wl P ]

L Ri

(&

<cl| Ik (@) [P| Du® (2)[” da + kP J f |u® (1) dxhdt]
0 JRo-t!

L n
JR+

i 2
<C ( ‘Xk(x)‘p‘Du(@(m)‘p dx + Lk J}Rn_l }u“) (zn, )] dxhdt]

L n
.JR+

which converges to 0 as k — c0. In other words, {Dv,(f)}zozl converges to Dul® in

LP(RY). It is also clear that {v,(f)}zo:l converges to u® in LP(RY) since

Hv,(f) — U(Z)HLP(R?r) = HXkU(Z)HLp(Rg) < HU(E)HLP(RHAX[Q%))'



68 CHAPTER [2l INTRODUCTION TO SOBOLEV SPACES
K l

Define uy, = (ou + ), \/Cg(v,(c) o9, '). Then uy, € €°(Q) for k » 1. Moreover,
/=1

lur = ullwre) = ur — Z ] P
Zm SR BN
K
C Y0 = uOlyra)
(=1

which implies that {uz}?, converges to u in W'P(Q2). As a consequence, u €
Wy (Q). o

We can now state some embedding theorems for bounded domains (2.

THEOREM 2.48 (Gagliardo-Nirenberg inequality for WP (Q)). Suppose that Q < R®
is open and bounded with €*-boundary, and 1 < p < n. Then there exists a generic
constant C = C(p,n, Q) such that

1l

it < Clulwiog)  Yue WH(Q).

Proof. Choose Q < R® bounded such that Qcc (NZ, and let Fu denote the Sobolev
extension of u to R™ such that Fu = u a.e., spt(Eu) < €0, and |Eullwir@ey <

Clu|wrr(). Then by the Gagliardo-Nirenberg inequality,

Jul 2, ) < 1Bl 22 < CID(EW)1a(as) < ClBulwroen < Clulwisg - ©

By following the proof of Theorem [2.35] we have the following generalization for

integers k > 1

THEOREM 2.49 (Gagliardo-Nirenberg-Sobolev inequality for W*?(Q)). Suppose that
Q < R® is open and bounded with €*-boundary, and 1 < kp < n. Then there exists a
generic constant C = C(k,p,n, Q) such that

< Clulwroy — Yue WHP(Q). (2.29)

Ln k:p

In fact, as mentioned in Remark [2.40], the theorem is true for real numbers s > 0
replacing integers k > 1, and follows from linear interpolation and the theory of

fractional-order Sobolev spaces defined later in Section [5.2] In the important case
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that p = 2, we are then able to answer the question of which H® spaces embed in L9

1
spaces. For example, when n = 2 and s = 3 We see that [Ju 1) < C||u||H%(Q), and
1
when n = 3 and s = 2 ||u||L%(Q) < C’||u||H%(Q).

THEOREM 2.50 (Gagliardo-Nirenberg inequality for Wy (Q2)). Suppose that Q < R*

is open and bounded with €1-boundary, and 1 < p < n. Then there exists a generic
constant C' = C(p,n, Q) such that for all 1 < g < P ,
n—p

lull o) < ClDulog)  Vue WyP(Q). (2.30)

Proof. By definition there exists a sequence {u;}32, < €*(€2) such that u; — u in
WP(Q). Extend each u; by 0 on Q. Applying Theorem to this extension, and

using the continuity of the norms, we obtain

Jul 2, < CIDUl o).

n—p (
Since () is bounded, the assertion follows by Holder’s inequality. o

THEOREM 2.51. Suppose that Q < R? is open and bounded with €*-boundary. Then
there exists a generic constant C' = C(2) such that for all 1 < q < o0,

] Loy < Cv/alul o) Vue Hy(S). (2.31)

Proof. The proof follows that of Theorem [2.36] Instead of introducing the cut-off
function g, we employ a partition of unity subordinate to the finite covering of the

bounded domain €2, in which case it suffices to assume that spt(u) < spt(U) with U
also defined in the proof Theorem [2.36] 0

REMARK 2.52. Inequality is commonly referred to as the Poincaré inequality,
it is invaluable in the study of the Dirichlet problem for Poisson’s equation, since the
right-hand side provides an H'(Q)-equivalent norm for all u € H}(Q). We will show
that holds for all dimensions n. In particular, there exists constants C', Cy such
that

Ci|Dul 120y < |ul @) < Cof| Dul 2 -

It follows that (2.31)) can be written as

HuHLq(Q) < C\/aHDuHLz(Q) Yue H&(Q) . (232)
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A more general form of the Poincaré inequality is given as follows:

LEMMA 2.53 (Poincaré inequality). Let Q < R™ denote an open, bounded, connected,

and smooth domain. Then there exists a generic constant C = C(2) such that

lu =@l r20) < C|Dulr2@) Yue H(Q), (2.33)
where u 1= J[Qu(y)dy denotes the average value of u over Q.
Proof. Suppose for the sake of contradiction that does not hold. Then there is

a sequence {u;}?, < H'(Q) satisfying

luj — @il r2@) > j|Dujlr2@) (2.34)

with an associated sequence on the unit ball of H'(2) given by

Uj—Uj

w; with H@UJHL%Q) =1 and U_)j =0.

g =5 2
According to (2.34), |Dw;|r2@) < ' so that |w;|fnq < 1+ 772 < . Strong
compactness, given by Theorem m (see also Theorem provides a subsequence
{w;, }7; and a limit w € L*(Q) such that w;, — w in L*(?) as k — o0. The limit w
satisfies w = 0 and |w|z2q) = 1.
Letting ¢ € €.°(2). We see that
J w(z)Dy(z)dr = lim | w;, (x)Dy(x)dx
0

k—o0 Q

~ _lim f Du, (x) p(x) dz < lim ji o] 20y = 0.
Q k—o0

k—o0

This shows that the weak derivative of w exists and is equal to zero almost everywhere;
that is, w € H'(Q2) and Dw = 0 a.e. As 2 is connected, we see that w is a constant,

and since w = 0, we see that w = 0, contradicting the fact that ||wl|;2@q) = 1. o

COROLLARY 2.54. Whenever u = J[ u(y)dy = 0, |Du|r2q) is an equivalent norm
Q

on HY(Q). In particular, there exists constants Cy, Co such that

The identical proof also shows that the validity of the following two results:
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LEMMA 2.55 (Poincaré inequality for H}()). Let Q < R® denote an open, bounded,

connected, and smooth domain. Then
|u|r2) < C||Dul 2o Vue Hy(Q), (2.35)
where the constant C depends on €.

LEMMA 2.56 (Another Poincaré inequality). Let 2 € R denote an open, bounded,
connected, and smooth domain. Then for ke L*(0Q) and k =0 on 02 and k > 0 on

a set of surface measure greater than zero. Then
|ufr2(q) < C(H\/EUHL%Q) + [ Du 2 Vue H'(Q), (2.36)

where the constant C depends on €.

Integration by parts for functions in ;" (Q)

Having established Theorem [2.47], using the density argument we can conclude the

following

THEOREM 2.57. Let Q < R® be a bounded domain with €*-boundary. Then for
1 <p<oo,

JQ up,; de = — JQ u,; @ de Vue W,P(Q) and o € W (Q),

where p’ = p . 1s the conjugate of p.

The proof is simple and is left as an exercise.

2.13 Weak Solutions to the Dirichlet Problem

Suppose that < R" is an open, bounded domain with ¢!-boundary. A classical
problem in the linear theory of partial differential equations consists of finding solutions

to the Dirichlet problem:

—Au=f in Q, (2.37a)
u=0 on 09, (2.37b)
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52

where A = Z 2 denotes the Laplace operator or Laplacian. As written, (2.37) is
i=1 0Z;

the so-called strong form of the Dirichlet problem, as it requires that u to possess

certain weak second-order partial derivatives. A major turning-point in the modern
theory of linear partial differential equations was the realization that weak solutions of
(2.37) could be defined, which only require weak first-order derivatives of u to exist.

(We will see more of this idea later when we discuss the theory of distributions.)

DEFINITION 2.58. The dual space of H;(f2) is denoted by H~1(Q2). For fe H(Q),

|flaz-—1@ = sup {f,9),

”w”Hé(Q):l
where {f, 1) denotes the duality pairing between H'(Q2) and HJ ().

THEOREM 2.59 (The distributional space H1(2)). For any f € H~(Q), there exist
n+ 1 functions f; € L*(Q), j = 0,1,2,....,n such that for all v e Hy (),

(fov) = L GEGR i filx) 5;’ ()] de. (2.38)

and

Iy = imt { ( jZ )P de)’ | £ satisfing B39} (239)

Proof. By the Riesz Representation Theorem, for every f € H'(Q) there exists
u € H}(Q) satisfying

(u,v) 200y + (Du, Dv) 2y = {f,v) Yove H)(Q). (2.40)

Letting fo = w and f; = du/dz; for i = 1,...,n gives the relation (2.38)).
Then for f € H (), we may write

<f,v>=L [90( +Zgz 5901 ] : (2.41)

for all v e H}(Q) and g; € L*(Q2) for j = 0,1,2,...,n. Setting u = v in (2.40) yields

0l < f S Jgo(w) dr.
Qj:O
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Hence, since fo = w and f; = du/dz;, we see that

| Sis@rde< | Yl . 242
2j=0 2j=0
From ([2.38)), we infer that
n 1
e < (| 15 dz)” it lolgo <1
j=0

Thus, with v = uHuHI_{ll(Q) in (2.40)), we have that
0

o = | D (@R . (243

Then, (2.39) follows from (2.41))-(2.43). o
DEFINITION 2.60. A function u € H}(2) is a weak solution of (2.37) if

JDu'Dvd:c=<f,v> Vove Hy(Q).
Q

REMARK 2.61. Note that f can be taken in H*(€2). According to the Sobolev
embedding theorem, this implies that when n = 1, the forcing function f can be taken
to be the Dirac Delta distribution.

REMARK 2.62. The motivation for Definition is as follows. Since €.°(Q) is
dense in Hj (), multiply equation (2.37al) by p € €7°(12), integrate over €2, and employ

the integration-by-parts formula to obtain J Du - Dpdx = f fedx; the boundary
Q Q

terms vanish because ¢ is compactly supported.

THEOREM 2.63 (Existence and uniqueness of weak solutions). For any f € H1(Q),
there exists a unique weak solution to (2.37)).

Proof. Using the Poincaré inequality, |Dufz2q) is an H'-equivalent norm for all
u e Hi(Q), and (Du, Dv)j2() defines the inner-product on Hj(Q). As such, according
to the definition of weak solutions to (2.37)), we are seeking u € Hj () such that

(u )y = (fv) Vve H;(Q). (2.44)

The existence of a unique u € H}(Q) satisfying (2.44]) is provided by the Riesz

representation theorem for Hilbert spaces. o
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REMARK 2.64. Note that the Riesz representation theorem shows that there exists
a distribution, denoted by —Au € H~1(Q) such that

(=Au,vy ={f,vy  Vve Hy(Q).
The operator —A : H}(2) — H~'(Q) is thus an isomorphism.

A fundamental question in the theory of linear partial differential equations is
commonly referred to as elliptic reqularity, and can be explained as follows: in order
to develop an existence and uniqueness theorem for the Dirichlet problem, we have
significantly generalized the notion of solution to the class of weak solutions, which
permitted very weak forcing functions in H~1(£2). Now suppose that the forcing
function is smooth; is the weak solution smooth as well? Furthermore, does the weak
solution agree with the classical solution? The answer is yes, and we will develop
this regularity theory in Section [7, where it will be shown that for integers k > 2,
—A: H5(Q) n H(Q) — H*2(Q) is also an isomorphism. An important consequence
of this result is that (—A)~1 : H*2(Q) — H*(Q) n H}(9) is a compact linear operator,
and as such has a countable set of eigenvalues, a fact that is eminently useful in the
construction of solutions for heat- and wave-type equations.

For this reason, as well as the consideration of weak limits of nonlinear combinations
of sequences, we must develop a compactness theorem, which generalizes the well-

known Arzela-Ascoli theorem to Sobolev spaces.

2.14 Strong Compactness

In Section [1.5.3] we defined the notion of weak converence and weak compactness for

LP-spaces. Recall that for 1 < p < o0, a sequence {u;}*

4 S LP(2) converges weakly to

u e LP(Q)), denoted u; — w in LP(Q), if J ujvdr — J wv dzx for all v e L1(Q), with
Q Q

q= Ll We can extend this definition to Sobolev spaces.
D

DEFINITION 2.65. For 1 < p < 0, u; — u in W'?(Q) provided that u; — u in
LP(Q) and Du; — Du in LP(2).

Alaoglu’s Lemma (Theorem [1.57) then implies the following theorem.
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THEOREM 2.66 (Weak compactness in W'P(Q)). Let Q < R* and 1 < p < .
Suppose that

sup |u;|wir@) < M < 0
J

for some constant M independent of j. Then there exists a subsequence u;, — u in

Wir(Q).

It turns out that weak compactness often does not suffice for limit processes
involving nonlinearities, and that the Gagliardo-Nirenberg inequality can be used to

obtain the following strong compactness theorem.

THEOREM 2.67 (Rellich’s theorem on a bounded domain Q). Let Q@ < R™ be an
open, bounded domain with €'-boundary, and 1 < p <n. Then WLP(Q) is compactly
embedded in LI(Y) for all1 < q < %; that is, if

sup |u;|wir@) < M < 0
J

for some constant M independent of j, then there exists a subsequence uj, — w in
L4(2). In the case that n = 2 and p = 2, H'(Q) is compactly embedded in L4(Q) for

1<q<o0.

In order to prove Rellich’s theorem, we recall the following classical compactness

theorem.

THEOREM 2.68 (Arzela-Ascoli Theorem). Let Q@ € R™ be a bounded domain. Suppose

that {u;}72, = €°(Q) is a sequence of equi-continuous functions and sup [u;go@) <
j

M < oo. Then there exists a subsequence {ujk}zozl which converges uniformly on Q.

Proof of Rellich’s theorem. The proof proceeds in four steps. First, we use Sobolev
extension to extend our sequence of functions onto R". Second, we use mollification
to produce a smooth sequence of functions which will satisfy the hypothesis of the
Arzela-Ascoli theorem. Third, we show that our mollified sequence is very close in L!
to our original extended sequence, and hence close in L9 for 1 < ¢ < DLEQ Finally, a

classical diagonal argument provides convergence of a subsequence in LY.
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Step 1. Sobolev Extension. Let () < R" denote an open, bounded domain such
that Qcc Q. By the Sobolev extension theorem, the sequence {Eu;}3, satisfies
spt(Eu;) < 2, and

sblp | Ewj | wrp@ey < CM .

Denote the sequence Eu; by u;. By the Gagliardo-Nirenberg inequality, if p* = %,
Sl;p 18] o emy < CSlJ}P |l wr1.p ey < CM.
Step 2. Approximation by smooth functions. For ¢ > 0, let 1. denote the
standard mollifiers and set u§ = 7.+ Fu;. By choosing € > 0 sufficiently small,
us € 6,.°(52).
We compute that
_ 1y _
uj = f —n(=)u;(z — y)dy = f n(z)u;(x — ez)dz. (2.45)
B(0,e) € € B(0,1)
Applying the fundamental theorem of calculus to u;, we see that

1

uj(r —ez) —uj(x) = fo %ﬂj(x — etz)dt = —EJ Duj(x —etz) - zdt. (2.46)

0
Substitution of (2.46|) into ([2.45)) shows that

1
a5 () — ()| = e ( n(z) ( |Duj(z — etz)| dzdt,
JB(0,1) Jo
so that
" rl
f G (x) — uy(x)|dx = e n(z) f | D (2 — etz)| dedzdt .
Q JB(0,1) Jo JO

By the mean value theorem for integrals, there exists a ¢ € (0, 1) such that

1
J |Duj(x — edz)|dz = J J |Duj(x — etz)| dzdt .
Q 0 JO

Hence,
J w5 (x) — u;(x)| dov = € J J 0(2)| D (x — edz)|dzdx
O 0 JB0,1)
= fﬁ J Nes(W)| Duj(x — w)|dwdz
Q JB(0,e9)

=] tno < D) () d
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By Young’s inequality for convolution,
| 1@ = 5@ dr < DT < DT ey < CM.

Using the LP-interpolation Lemma [1.21] for any 1 < ¢ < np/(n — p),

I — ﬂjHLq@ < o5 = 3 g 175 — 1 e &
e'CM* | DS —Du]\Lp(Q
<e'CM. (2.47)

The inequality (2.47) shows that 5 is arbitrarily close to u; in L9(€2) uniformly in
j € N; as such, we attempt to use the smooth sequence uj to construct a convergent
subsequence uj,

Step 3. Extracting a convergent subsequence. Our goal is to employ the

Arzela-Ascoli Theorem, so we show that for € > 0 fixed,

sup || ilgo ) <M< and {u$}72, is equi-continous.
J
For x € R",
5up |y < supsup | e = )l 0)ldy
J T zeq Y B(x5€)

< el oo oy sUP [0 1 g5y < Ce™ < 0,
J

and similarly

sup [ Dus| o 5, < 1 Dnell ey sup 1] 1y < Ce™™ ™ < o0,
J J

The latter inequality proves equicontinuity of the sequence {u and hence there

Jj=b
exists a subsequence {u;, }{, which converges uniformly on Q, so that

)

lim sup ||uj, — u

k7 o ngLq

Step 4. Diagonal argument. Now, fix 6 > 0 and choose € sufficiently small in
(2.47)) such that (with the triangle inequality)

lim sup Hﬂjk — U, HLq(ﬁ) <9
k,0—o0
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Letting 6 = —, =, etc., and using the diagonal argument to extract further subsequences,

N =
—- ol

we call arrange

0Q

o find a subsequence (again denoted by {u;, };_;) of {;}72, such that

limsup ||w;, — ajz”L‘l(ﬁ) =0,

Jo 0 —>00
and hence
lim sup |uj, — uj,|za@) = 0,
ko, —>00
The case that n = p = 2 follows from Theorem [2.36] o

2.15 Weak convergence in W!?(Q)) for 1 < p <

If WP(Q) is reflexive, then the Alaoglu theorem (Theorem can be used to study
the weak-* convergence of a bounded sequence in W'?(Q), which in turn is equivalent
to the weak convergence of a bounded sequence in WP(£2). Our goal in this section
is to establish the reflexivity of W?(Q) for 1 < p < .

THEOREM 2.69 (Dual space of W'?(Q)). Let 1 < p < oo with conjugate p' =

Ll' For every f € WYP(Q)', there exists a unique vector-valued function v =

p —_—
(vo,v1, -+ ,v) € LY (Q)* such that

g ou
(fyuy = Luvodx—i—ZL a—wwdx,
=1

where (-,-) denotes the duality pairing between distributions in W1P(Q)
in WP(Q). Moreover,

" and functions

| lwre@y = D lvel ooy -
=0

Proof. Define a bounded linear map P : W?(Q) — LP(Q)"*! by

Pu= u . @_U>,

u, (’}_5(717 ) axn
and let W be the range of P. Since P is an isometry, W is a closed subspace of
LP(Q)™F1. For given f e W'P(Q)', define L : W — R by
L(Pu) = (f,u).

Then L € W’ since |L|w: < |f|wrry. By the Hahn-Banach theorem, there exists

an extension L : LP(Q)"*! — R satisfying
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1. L(w) = Lw for all w e W; 2. \|iHLP(Q)n+1/ = |L|w.

By the Risez representation theorem (Theorem [1.51)), there exists a unique v =
(vo,v1,- -+ ,vn) € LY (Q)**! such that

Z('w) = Z L wpvyp dx Vw = (wo,wr, - ,wy) € LP(Q)"
=0

and ||.ZHL;D(Q)1:+1! = > |ve|r()- In particular, we have
(=0

{f,uy = L(Pu) = E(Pu) = L uvg dr + Z}nl L —uvpdr

which concludes the theorem. o

REMARK 2.70. For the case p = 2, the existence of such a v in Theorem [2.69] is

guaranteed by the Riesz representation theorem.

Let {u}?, be a bounded sequence in W'?(Q). Then {u;}*, and {Vu}¥_, are
both bounded sequences in LP(€2). Therefore, Theorem implies that there exists
a subsequence {ug, }72, such that uy, — u in LP(Q2) and Vuy,, — v in LP() for some
functions u,v € LP(2). In other words,

lim | g de :J updr and lim | Vugpdr :J vodr Yoe Lp/(Q%
Q Q Q

Jj—o J=0 Jo

Let p € €*(RQ). Then o, Vi e L (9Q); thus by the definition of weak derivative,
J vpdr = lim | Vugpdr=—lim | u,Veodr = —J uVodx
Q I=%Ja =% Ja Q

which implies that v = Du in the sense of distribution, or equivalently, v is the weak

derivative of u. Therefore, we establish the following

THEOREM 2.71. Let {u;}° | be a bounded sequence in WP(Q) for 1 < p < o. Then
there exists a subsequence {uy,}7, such that {uy,}7, and {Duy,}72, converges weakly

to u and Du in LP(Q)), respectively.

To see that the convergence behavior in Theorem is in fact the weak convergence
in W'P(Q)), we make use of Theorem [2.69] Let {u;}?°, be a bounded sequence in
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WhP(Q) and f € WHP(Q)'. Then Theoremmprovides aunique v = (vg, vy, ,Uy) €
LP (Q)™+! such that

(fyuy = J uvod:c—i—Zf a—xzwda;

Therefore, the subsequence {uk]. };i1 provides by Theorem [2.71| satisfies

. duy,
Jhﬁng)[f ukvodx—i-Zf ﬁxgwdx —fuvodx—i-Zfa—wwdx
=(fiu).

}LI?O <f7 uk:j>

The argument above establishes the following

THEOREM 2.72. Let {u;}?, be a bounded sequence in W'P(Q) for 1 < p < . Then

there exists a subsequence {uy,}72, such that {uy,}?, converges weakly in W"P(Q).

2.15.1 The Div-Curl Lemma

It is well-known that if u;, — u and vy — v in L*(Q), uiv, does not necessarily
converge to uv weakly in D(€2), not even up to a subsequence. In this sub-section,
the weak convergence of the product two weakly convergent sequences in L*(() is
considered, and the goal is to show the weak convergence of the product of two weakly

convergent sequence under certain additional constraints.

THEOREM 2.73 (Div-Curl Lemma). Suppose that u, — u and vy — v both in
L*(R™), and divuy and curlvy, are compact in H='(R™), where n = 2 or 3. Then there

exists a subsequence {k;}7, such that uy; - vy, — uw-v in D'(R").

Proof. Let wy € H*(R™) solve

: n
wy — Awy = v in R",

wy =0 on OR",
and w be the solution to the equation above with v replacing vy. Then

Hwk”HQ(R") S CH”kHL?(Rn) 5
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and the Rellich Theorem (with the help of diagonal process) implies that there exists a
subsequence of {wy}3> ,, still denoted by {wy};> ,, such that w, — w in H'(B(0, R))
for all R > 0. By the compactness of divuy and curlvy in H'(R™), there exists a

subsequence {k;}72, such that
divuy, — divu in H '(R"),
curlvy, — curlvy in H '(R").
Let ¢ € D(R") be given. Then
—A(pcurlwy) = —curlwg(p + Ap) — 2V - Veurlwy + ¢ curlvy, . (2.48)
Since ¢ + Ay is compactly supported,
curlw(p + Ap) — curlw(p + Ayp) in L*(RY).

For the second term on the right-hand side of (2.48)), by the definition of the dual

space norm,

IV - Veurl(wy, — w)|g-1@e) =  sup (Ve - Veurl(wy, — w), )
weH; (R)
|W”H1(Rn):1
= sup [<A<p curl(wy, —w), ) +<{Vy @ curl(wy, — w), V@/})]
weHg (R")
\|¢||H1(]Rn)=1

< 2HV90||W1,@O(RH)||curl(wk]. — W) r2@sp(p)) = 0 as j— 0.

As a consequence, the right-hand side of (2.48]) converges strongly to —curlw(p +
Ap) — 2V - Veurlw + pcurlv in H-1(R"), and the elliptic estimate suggests that

|l curl(wy;, — w)|gi @y >0 as j— o0, (2.49)

Finally, observing that

J Up; Vi pdr

= f ug; - curlcurlwy; o dv — f
Rll

= J uy, - curl(p curlwy,; ) dx — J uy, - (Vo x curlwy, ) do
Rn

n

ug; - Vdivwy, o dv + f Up; - Wy, pdx

n n

+ f divug, divwy; ¢ dr + J ug; - Vo divwy, dr + J Up; - Wy, pdr,
Rﬂ

n n
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we conclude that the right-hand side converges to corresponding terms without k;;
thus it is clear that

lim Ug; - Vg pdr = J u - vpdr. D

J—00 Rn n
2.16 Exercises

PROBLEM 2.1. Suppose that 1 <p < co. If 7,f(x) = f(z — y), show that f belongs
to W'P(R") if and only if 7, f is a Lipschitz function of y with values in LP(R"); that
is,

|7y f = 7o fllLo@ny < Cly — 2]

What happens in the case p = 17

PROBLEM 2.2 (Fundamental theorem of calculus for integrands in L'). Let f € L'(R),

= foo f(y)dy - (*)

: ) d d
Prove that ¢ is continuous, and show that ﬁ = f, where ﬁ denotes the weak

and set

derivative.
(Hint: Given ¢ € €°(R), use (%) to obtain

[EC dx—ff y)dy do

Then write this integral as

lim = [ [o(e + k) — ()] gla) dr = — lim j f )l dyde.)

h—0 R h—0 h

PROBLEM 2.3 (Sobolev embedding for W™!'). Show that W™!(R*) = C(R") n

L*(R™).

(Hint: u(x f f (9y1 (a:+y)dy1 cdyn.)

PROBLEM 2.4 (Absolute continuity of weakly differentiable functions). If u €
W1P(R™) for some p € [1,0) and aa;] =0, j =1,..,n, on a connected open set

) < R", show that u is equal a.e. to a constant on Q. (Hint: Approzimate u using

that n. * u — u in WHP(R®) | where n, is a sequence of standard mollifiers. As we



Sobolev Spaces W#P(Q) for Integers k = 0 83

showed, given 0 > 0, we can choose € > 0 such that |ne % u — ul|p1.p@ny < 0. Show

that %(776 xu) =0 on Q.c=Q, where Q. /" Q as e — 0.)
J

More generally, if % = fj€ C(Q), 1 < j < n, show that u is equal a.e. to a
J
function in ().

PROBLEM 2.5. In case n = 1, deduce from Problems [2.2 and [2.4] that, if u € L _(R)
and if Z—u = f e L'(R), then
Xz

u(z) =c+ Jx f(y)dy a.e. t € R,

—0o0

for some constant c.

PROBLEM 2.6 (Fundamental theorem of calculus and mean value theorem for inte-
grals). Show that for u € W1(0,1),

PROBLEM 2.7. Let Q := B(O,%) < R? denote the open ball of radius % For

r = (x1,29) € Q, let

u(xy, 13) = 129 log (| log(|z|)|) where |z| = A/2? + 23 .

(a) Show that u e €1 (Q);

2

(b) show that g;; e C(Q) for j = 1,2, but that u ¢ €2(Q);
J

(c) show that u e H?(Q).

PROBLEM 2.8. Prove that €*(R") is dense in W"P(R™) for integers k > 0 and

1<p<co.
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PROBLEM 2.9. Let 7. denote the standard mollifier, and for u € H3(R3), set u¢ = nc=u.
Prove that

||U/E — UHLOO(]R3) < O\/E||U||H2(R3) s
and that

[u — ufpoms)y < Cél|u| gsms) -

PROBLEM 2.10. Let Q < R? denote an open, bounded, subset with smooth boundary.

Prove the interpolation inequality:
| Dulz2) < Clul )| D*ulra)  Yue H(Q) n Hy (),
where D?u denotes the Hessian matrix of u, i.e., the matrix of second partial derivatives

2 —
aj aux . Use the fact that CKOO(Q) N Hé (Q) is dense in u € HZ(Q) A H& (9)
(Aed

PROBLEM 2.11. Let D := B(0,1) < R? denote the unit disc, and let
u(z) = [ —log|z|]".
Prove that the weak derivative of u exists for all a > 0.

PROBLEM 2.12. Suppose that {f,}*_; is a bounded sequence in H'(2) for Q = R?
bounded. For which values of p does there exist an f € H'(Q) such that for a

subsequence f,,,
foe Dfn, — fDf weakly in LP(Q)?

PROBLEM 2.13. Suppose that u; — u in W1(0,1). Show that u; — u a.e.

We will use the notation u/(z) = %(x) in the following problems.

PROBLEM 2.14. Let p > 1 and set 2 = (0,1) < R.

(a) Suppose that XY, Z are Banach spaces, that X is compactly embedded in Y
and that Y is continuously embedded in Z. Show that for all € > 0 there is a
constant C, = C(€) such that

|ully < ellulx + Celullz Vue X.

(Hint: Argue by contradiction.)
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(b) Show that for all € > 0, there exists C' = C(¢, p) such that

HuHLoo(Q) < EHu/HLp(Q) + CHuHLl(Q) Yue Wl’p(Q) .

(c) Show that the inequality in (b) fails for p = 1 (Hint: Consider the sequence

up(z) = 2™ and let n — 0.)
(d) For 1 < ¢ < oo, show that there exists C' = C(¢, ¢) such that
[ulzag) < el + Clulpe) YueWH(Q).
PROBLEM 2.15. Let 2 = (0,1) < R.

(a) For u = J u(z) dz, show that
Q

Ju— @l < [l Fue WHEQ).
(Hint: The average u = u(xq) for some xy € [0,1].)
(b) Show that the constant 1 in (a) is optimal. In particular, show that
sup {[u — @] poq) v € WH(Q) and |u'|pi) =1} = 1.

(Hint: Consider a sequence u, € €*(Q) such that u!, = 0 on (0,1) for alln € N,
up(x) =0 for all z € 0,1 — %] for all n € N.)

(c) Show that the supremum in (b) is not achieved, so that there exists no function
u e WH(Q) such that

Hu — ﬂHLoo(Q) =1 and Hu'HLl(Q) =1.

(d) Prove that
1
[ulpee) < SlWle) Yue Wy ().

(Hint: Use that |u(x) — u(0 f v/ (y)|dy and |u(z) — u( J [/ (y)|dy.)

(e) Show that % is the best constant in (d). Is it achieved?

(Hint: Fiz & € Q and consider a function u € WOI’I(Q) which is increasing on

(0,7), decreasing on (Z,1), with u(z) = 1.)
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(f) Show that for 1 < ¢ < oo and 1 < p < o,
u — ﬂHLq(Q) < C”U,HLI’(Q) Yue Wl’p(Q) ,

and
[u] Loy < O”U/”LP(Q) Yue Wol’p(Q) .
Prove that the best constants in these two inequalities are achieved when
l<g<wandl <p<w
(Hint: Minimize ||u/|1pq) in the class u € WHP(Q) such that |u — @] e = 1
(respectively, u € WyP(Q) such that |[u|peq) = 1.))
PROBLEM 2.16. Let Q = (0,1) < R.

(a) Suppose that u € WP(Q) with 1 < p < oo. Show that if u(0) = 0, then
ulw) € LP(Q)) and Hardy’s inequality holds:
i

Uu
H o/]l2o(0)

.

zlr@) p—1

(b) On the other hand, suppose that u € WP(Q) with 1 < p < o and that
“(;) e L7(2). Show that u(0) = 0.

(Hint: Argue by contradiction.)

1

s 11 _ () 1
1+‘1ogx|'ShOWthatUEW (©), u(0) = 0, but ¢ L'(Q).

(c) Let u(x) =

(d) Suppose that u e WP(Q) for 1 < p < o0 and u(0) = 0. Let £ € €°(R) denote
any function satisfying {(x) = 0 for all —o0 < x < 1 and &(z) = 1 for all
€ [2,0). Set &,(z) = £(nz) and let u,(x) = &, (z)u(x) for n € N. Verify that

u, € WH(Q) and that u, — u in W?(Q) as n — oo.

(Hint: Consider the cases p =1 and p > 1 separately.)
PROBLEM 2.17. Let 2 = (0,1) < R.

(a) Let u € W2P(Q2) with 1 < p < o0. Assume that u(0) = «/(0) = 0. Show that
/
“;f) e /(9) and ' & [r(0) with

|lu" | r ()

<
@) p—1

H 1‘2 Lr(Q H
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(b) Show then that v := % e W(Q) with v(0) = 0.

(c) With u as in (a), set u,, = &,u as in Problem [2.16(d). Verify that u, € W??(Q)

and that u,, — u in W?P(Q) as n — 0.

(d) For integers k> 1 and 1 < p < oo, suppose that u € X*, where
XF={ueWrr(Q) : D*u(0)=0,|a| <k —1}.

Show that % € LP(Q) and that %5 € X

(Hint: Use an induction argument on k.)

(e) Assume that v € X* and show that

Diy

k_j_.eXi Y integersd,j, j=0,i>1,i+j<k—1.
x K3

w =
(f) With w as in (d) and &, as in (c), show that &,u € W*P(Q) and that u,, — u in
WHkP(Q) as n — .
(g) Let WFP(Q) denote the closure of €* (). Show that
WiP(Q) = {ue WEP(Q) : w=Du=---= D u=00naQ}.
(Note well the difference between W*?(Q) A WyP(Q) and W, ?(Q) when k > 2.)

(h) Assume now that u € W2(Q) with u(0) = «/(0) = 0. Set

u
it oze (01
v(x) =< T it e (0.1]
0 if x=0.

Verify that v e C([0,1]) and prove that v € Wh1(Q).
(Hint: Use the fact that v'(z) = 1f u’(y)dy.)

ZE2 0
(i) Construct an example of a function u € W?%1(Q) satisfying u(0) = u/(0) = 0, but
U o’
with ) ¢ L'(Q) and - ¢ L'(Q).
(Hint: Use Problem [2.16(c).)



Chapter 3

The Fourier Transform

The Fourier transform is one of the most powerful and fundamental tools in linear
analysis, converting constant-coefficient linear differential operators into multiplication
by polynomials. In this section, we define the Fourier transform, first on L'(R")
functions, next (and miraculously) on L?(R") functions, and finally on the space of

tempered distributions.

3.1 Fourier Transform on L!(R") and the Space . (R")

DEFINITION 3.1. For all f € L'(R"™), the Fourier transform of f, denoted by .Z f or

f, is defined by

~

(F)E) =F&) =@m)72 | fla)e ™ da.
Rn
It is clear that % : L}(R®) — L*(R"). In fact,
|-Z flloey < (27) 72| £l ey -

DEFINITION 3.2. The Schwartz space is the collection of smooth functions of rapid
decay denoted by

F(R") ={ue ¥°R") |2’ Due L*(R") Va,3eN}.
Elements in .7 (R") are called Schwartz functions.

It follows from the definition of the Fourier transform that
ZF (R - S (RY),

88
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and that, in particular,
ED;f = (=) (=1)PLF(Dsa f) .

The Schwartz space .(R") is also known as the space of rapidly decreasing functions;

thus, after multiplying by any polynomial functions P(z),
P(x)D(x) — 0 as x — oo for all « € N™.

The classical space of test functions Z(R*) := €.°(R") < .#(R"). The prototype
element of . (R") is e~ 171" which is not compactly supported, but has rapidly decreasing
derivatives.

The reader is encouraged to verify the following basic properties of .7 (R"):
1. Z(R") is a vector space.

2. .(R") is an algebra under the pointwise product of functions.

3. Pue (R for all ue #(R") and all polynomial functions P.

4. (R") is closed under differentiation.

5. Z(R") is closed under translations and multiplication by complex exponentials
ers,

6. .7(R") < LY(R") (since if u € .Z(R?), |u(z)] < C(1 + |z|)~®*+Y for some C > 0,

and (1 + |z])~*Vdx decays like |z|~2 as 2| — ).

DEFINITION 3.3. For all f € L'(R"), we define operator .#* by
(Z*f)(x) = (2m)72 | f(&)e™de.
Rn

The function .Z#* f sometimes is also denoted by f
LEMMA 3.4. (Fu,v)p2me) = (U, F*0) p2mn) for all u,v € L (R?).

Recall that the L?*(R") inner-product for complex-valued functions is given by

(U,U)LQ(RH):J u(z)v(z) de.

Rl’)
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Proof. Since u,v € .(R"), by Fubini’s Theorem,

(Fu,v) 2@y = (27) 72 J f —E dy v (€) dé
)73 f f z)eimEu(€) de da
= (2m)"2 J u(x) f ety (€) dé do = (u, F*0) p2mn) - o
THEOREM 3.5. . =Id = 77" on S(R").

Proof. We first prove that for all f € Z(R"), (F*.Z f)(x) = f(z).
(FFN@) = m) 7 | (| )y
Rn Rn
= en [ | e dyd,
Since .Z f € (R"), by the dominated convergence theorem,

(F*F f)(x) —hm27r JJ e~ e @€ (1)) dy dE .

For all ¢ > 0, the convergence factor e~” allows us to interchange the order of

integration, so that by Fubini’s theorem,

(71w = timeem) ™ [ ([ e eI dy

e—0

We define the integral kernel
pe(m) _ (27T>nj efe\§|2+ix-§d£
Then F*.7 f = hmpg*f Let p(z) = p1(x) = (QW)HJ e~ lP+iz€de  Then
€z —n — €2 +ia- € —n — €)% +iz-¢ 2 a2
p() = m) | e = 2 [ e — (o).

We claim that

1 x|?
pe(z) = e~ and that J p(z)dx =1. (3.1)

n
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Figure 3.1: As ¢ — 0, the sequence of functions p, becomes more localized about the
origin.

Given , then for all f € .7 (R"), p.* f — f uniformly as € — 0, which shows
that .#*.% = Id, and similar argument shows that .#.7* = Id. (Note that this follows
from the proof of Theorem [I.42] since the standard mollifiers 7, can be replaced by
the sequence p,. and all assertions of the theorem continue to hold, for if is true,

then even though p. does not have compact support, J pe(x)dx — 0 as e — 0 for
B(0,0)¢

all § > 0.)
. . . 1
Thus, it remains to prove |D It suffices to consider the case € = 2 then by

definition

p%(x) = (27?)‘“] em'fe_gdf = ﬁ((QW)_ge_f)(x) :

n

|z|2

In order to prove that p; (z) = (2m)"2e~ 2, we must show that with the Gaussian

x 2
function G(z) = (QW)_%e_‘Tl,

By the multiplicative property of the exponential,

P2 _ 82 8

it suffices to consider the case that n = 1. Then the Gaussian satisfies the differential

equation

d
%G(x) +2G(z) =0.
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Computing the Fourier transform, we see that

—zd%@(m) —i¢G(x) = 0.

Thus,

To compute the constant C,

[N

C = G(0) = (27r)_1f e dr = (27)"

R

which follows from the fact that
7:2 1
f ez dx = (2m)z2. (3.2)
R

To prove ([3.2)), one can again rely on the multiplication property of the exponential to

observe that

2w Moo
J ev1/2 dxlj e"3/2 dyy = J @i +23)/2 g = J J e_érdrdQ = 2. o
R R R? o Jo

It follows from Lemma that for all u,v € & (R"),
(ﬁu, ﬁv)]ﬂ(Rn) = (u, ﬁ*fv)L%Rn) = (u, U)LQ(RH) .
Thus, we have established the Plancheral theorem on .7 (R").

THEOREM 3.6 (Plancheral’s theorem). .# : ./ (R") — Z(R") is an isomorphism

with inverse F* preserving the L*(R") inner-product.

3.2 The Topology on . (R") and Tempered Distribu-
tions

An alternative to Definition [3.2] can be stated as follows:

DEFINITION 3.7 (The space .7 (R")). Setting (z) = /1 + |]2,
S (R") = {ue ¢°R") [{x)"|D*u| < Cro VkeN}.

The space .(R") has a Fréchet topology determined by semi-norms.
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DEFINITION 3.8 (Topology on .#(R")). For k € N, define the semi-norm

pr(u) = sup {(2)*[Du(z)|,

zeR™ |a|<k

and the metric on . (R")

The space (.7 (R"), d) is a Fréchet space.

DEFINITION 3.9 (Convergence in .#(R")). A sequence u; — u in .%(R") if py(u; —
u) — 0 as j — oo for all ke N.

DEFINITION 3.10 (Tempered Distributions). A linear map 7' : /(R") — C is

continuous if for some k € N, there exists some constant C}, such that
‘<T U>‘ Ck:pk Yue y(Rn) .

The space of continuous linear functionals on .(R") is denoted by .#’(R"). Elements
of .#/(R") are called tempered distributions.

DEFINITION 3.11 (Convergence in ./(R")). A sequence 7; — T in ./(R") if
(Tj,uy — (T, u)y for all u e .Z(R").

For 1 < p < oo, there is a natural injection of LP(R™) into .#/(R™) given by
(fyuy = f(x)u(z) dz Vue S(RY).
Rn

Any finite measure on R* provides an element of ./(R"). The basic example of such

a finite measure is the Dirac delta ‘function’ defined as follows:
{0g,uy = u(0) or, more generally, {(J,,uy =u(z) Yue S (R").
We shall often use d to denote the Dirac delta distribution d.

DEFINITION 3.12. The distributional derivative D : ./(R*) — .¢”(R") is defined
by the relation
(DT ,uy = =T, Duy  Yue ./ (R").

More generally, the ath distributional derivative exists in .#/(R") and is defined by

(D°T,u) = (=1)I°NT, D)y  Yue.7(RY).
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Multiplication by f € #(R") preserves .#/(R"); in particular, if 7" e ./ (R"), then
fTe.”'(R") and is defined by

T uy =T, fuy Vue.”(R").

EXAMPLE 3.13. Let H := 1y, denote the Heavyside function. Then

C;—];Z(S in ' (R").

This follows since for all u € . (R"),

dH du *
—,uy=—H,—)=— —dx = =, u).
G =< == | e —u(0) = G0
ExAMPLE 3.14 (Distributional derivative of Dirac measure).
do > du

3.3 Fourier Transform on .#’'(R")
DEFINITION 3.15. Define .# : /' (R*) — %'(R") by
(FT uy={T,Fuy Vue S(RY),

with the analogous definition for .#* : .#/(R") — .%/(R").
THEOREM 3.16. #*% =1d = #.7* on ' (R").
Proof. By Definition [3.15] for all u € . (R")

(FFT uy =(F*w, Fuy =T, " Fuy =T,u),
the last equality following from Theorem [3.5] D

EXAMPLE 3.17 (Fourier transform of §). We claim that .#¢ = (27)~2. According
to Definition [3.15] for all u € .(R"),

(F6,u) = (6, Fuy — Fu(0) — J (o) F () dz,

so that .0 = (27) 7.
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EXAMPLE 3.18. The same argument shows that .#*(§) = (2)~2 so that .F*[(27)2d] =
1. Using Theorem , we see that % (1) = (27)2§. This demonstrates nicely the
identity

€2 ()| = [F (D) ()]
In other the words, the smoother the function x — w(z) is, the faster £ — u(&) must

decay.

REMARK 3.19. A function f € L{ (R") generates a distribution f € #'(R"). We

now show that the Fourier transform given by Definition [3.15] agrees with the Fourier

transform of a function.
For ¢ € /(R"),

Feor=¢.o= | 10200 = ooz || see@e s drag

1 ,
i | @ dde,
m—0o0 (27‘[‘)5 Q,, Jrn
o0
where €, is an increasing sequence of bounded sets such that ) Q,, = R". Letting
m=1

fo = 1o for (@) = —— | f(&)e~=tde, we find that

(2m)z Jay,

! lim f f(&)e ™S p(x)dE de .
Qm

(271' 3 n M—00

< lim fmu 90> =
m—oo

Therefore, if we define f = lim f,, whenever the limit makes sense, then we have the
m—00

following identity
J F©)p(a)e™8de dx = J F©p(a)e™ ¢ dudg (3.3)
n Rn n Rn

and f agrees with the Fourier transform of a function. Note that 1) shows that we
can interchange the order of integration even though f(&)p(z)e~¢ does not belong
to LY(R?™).

3.4 The Fourier Transform on L*(R")

In Theorem we proved that €.°(R") is dense in LP(R") for 1 < p < 0. Since
¢ (R*) < L (R"), it follows that .(R") is dense in LP(R™) as well. Thus, for every
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u € L*(R™), there exists a sequence {u;}72, < .(R") such that u; — u in L*(R"), so
that by Plancheral’s Theorem [3.6]

||1’i] - akHL2(Rn) = HU] - ukHL2(Rn) < E€E.
It follows from the completeness of L*(R™) that the sequence @; converges in L?(R™).

DEFINITION 3.20 (Fourier transform on L*(R")). For u € L*(R) let {u;}7, denote

an approximating sequence in .(R"). Define the Fourier transform as follows:
J—0
Note well that % on L?(R") is well-defined, as the limit is independent of the

approximating sequence. In particular,
[l oy = Tim [t 2oy = i gl zaeny = ] 2o -
By the polarization identity
1 2 : -2
() pageny = 5 (10 + 1 aqeny = il + 032y
— (1= Dlulaqgny = (1 = ) [l
we have proved the Plancheral theoren[f]on L*(R"):

THEOREM 3.21. (u,v)2re) = (Fu, Fv)2me) for all u,v e L*(R).

3.5 Bounds for the Fourier Transform on LP(R")

We have shown that for v € LY(R"), |[U]|po@n) < (27)72
ue L*(R™), |4]p2@ny = |u]r2re). Applying the Marcinkiewicz Interpolation Theorem
(Theorem |[D.4)) (by interpolating p between 1 and 2) yields the following result.

uf 1 (mny, and that for

THEOREM 3.22 (Hausdorfl-Young inequality). If u e LP(R") for 1 < p < 2, then for
q= p;l, there exists a constant C' such that
p

@l zogen) < Clul o en) -

!The unitarity of the Fourier transform is often called Parseval’s theorem in science and engineering
fields, based on an earlier (but less general) result that was used to prove the unitarity of the Fourier
series.



The Fourier Transform 97

Returning to the case that u € L'(R™), not only is Fu € L*(R"), but the

transformed function decays at infinity.

THEOREM 3.23 (Riemann-Lebesgue “lemma”). For u € L*(R™), Zu is continuous
and (Fu)(&) — 0 as || — .

Proof. Let By = B(0, M) < R". Since f € L'(R"), for each ¢ > 0, we can choose M
sufficiently large such that

ﬂ@—Lma“WmM4<e

Using Lemma [1.36} choose a sequence of simple functions {¢;}7, which converges to

fin LY(Byy). Then for j € N chosen sufficiently large,

f(&) — JB @;(x)e ™t dw‘ < 2¢.

N
Writing ¢;(z) = >} C/lg,(z), we have that
=1

~ N )
‘f(f) - Z Cef p;(x)e ™  da| < 2¢.
=1

E,

By the regularity of the Lebesgue measure p, for each ¢ € {1,..., N}, there exists a
compact set K, and an open set O, such that K, € E, € O, and

#(O) = 5 < u(Er) < u(Ke) + 5

Since Oy is open, Oy = |J V! for some open rectangle V¢ and index set Ay. By the

O(EA[

Ny
compactness of Ky, K, < | Vﬁj for some {al, ...,aN[} < Ay; thus
j=1

It then follows that
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C
&1 &n

On the other hand, for each rectangle Vﬁj,

et dx‘ < , SO

¢
Vaj

F(e) <C’<e+ﬁ).

Since € > 0 is arbitrary, we see that f({') — 0 as || — o0. Continuity of Fu follows
easily from the dominated convergence theorem. =
3.6 Convolution and the Fourier Transform
THEOREM 3.24. If u,v € L'(R®), then u*v e L'(R™) and

F(uxv) = (2m)2 (Fu)(Fv), F*(uxv) = (2n)2(F*u)(F*v).

Proof. Young’s inequality (Theorem [1.47)) shows that u* v € L'(R") so that the Fourier

transform is well-defined. The assertion then follows from a direct computation:

(‘ .
F(uxv) = 2m)7 2 | e ™S(uxv)(z)dr
R
= (2m)72 u(z y)dy e " da
J Rn JRn
= (27)"2 f u(z —@eE dr o) e E dy
Jro Jrn

— (2m)2a0  (by Fubini’s theorem) .
That .ZF*(u*v) = (21)2 (F*u)(.F*v) can be proved in a similar way. o

By using Young’s inequality (Theorem |1.48|) together with the Hausdorff-Young

inequality, we can generalize the convolution result to the following

THEOREM 3.25. Suppose that u € LP(R") and v € LY(R"), and let r satisfy Lo
”

1+1—1fo7“1 <p,q,r <2. Then F(u*v), J*(U*U)ELT%(RH) and
p q

F(uxv) = (20)2 (Fu)(Fv), F*uxv) = (21)2(F u)(F*).

Let * denote the convolution operator defined by f * g = (27)~2(f* g). Then the
theorem above implies that if u € LP(R") and v € LI(R"),

F(uxv) = (Fu)(Fv), F(uxv)=(F*u)(F*v).
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Using this notation, we find that for f,g e ./ (R"),
1 \n ~
g = (o) || e nawetdyir = Fr o,

where ™ : (R") — Z(R") is the reflection operator defined by f(:ic) = f(—x). This

observation motivates the following

DEFINITION 3.26. Let f € (R") and T € ./(R"). The convolution f x T is the
tempered distribution defined by

f*T oy =(T.frp) VopeI (R,
THEOREM 3.27. Let f € #(R") and T € #'(R"). Then F(f+«T) =f-T.

~
~ ~

Proof. Since .7 (f * Q) = fap, we have fx ¢ = ﬁ(f . go). Moreover, fz f As a

consquence,

(F(f+T) )= (f+T.0) =TT+ ) =D F oy =B F oy = (FT.gy. o

3.7 An Explicit Computation with the Fourier Trans-
form

As we have shown that F*F = FF* = Id, in this section, we shall denote F* by F~1.
The computation of the Green’s function for the Laplace operator is an important
application of the Fourier transform. For this purpose, we will compute f for the
following two cases: (1) f(z) =e " ¢t >0 and (2) f(z) = |z|*, —n <a < 0.
Case (1) In this case, f; is rapidly decreasing but not in the Schwartz class S(R").
We begin with n = 1. It follows that

Fe© = [ et = [ e Ot + [ e

—o0 0
B 1 [ex(t_if) 0 N ex(_t_if) OO] B \/5 t
\2r t—1& -0 —t—1i&lo B T2+ 27

. . 1 (* t ,
By the inversion formula, we then see that e~*#l = J 5 e dg.
T J_ o t? + E2

In order to study the higher-dimensional cases when n > 1, we begin with the

observation that

o0 2 —s£2d efs(t2+§2) o 1 0
Le ‘ S_—(t2+§2)‘o_t2+§2' (3:4)
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With A = |z| > 0, we use (3.4) to find that

0 0] 0 Q0
o—tlel — lf ~ ¢ g lTle e — lj t(f e—st26—552d8) N e
T ) _pt?+& TJ)_ o \Jo

1 (* 2 _ 22
= ;L t(f_oo s’ Z‘wiﬁdg ?ds _f N e~ e 1 ds.

Now, we compute the Fourier transform with respect to the variable x = (z1, ..., z,),
and find that

F(e (€)= foo Lot (e yds = J Tt o)t st ) g
0o VST 0 ST
l J 1 n C(n)t
- nil 25)2eds = ——— =7,
(82 + 1€ Jo \/%( ) (82 + [¢2) "
“ 1 n . 2" n+1 +1
where the constant C'(n) = f ﬁ@s)%ﬂs = ;F( ), where F( 5 ) denotes

the Gamma function. It follows that

FH ) = Flet)(x) = [ 2r )t 89

(12 + |z|?

Case (2) For this case, we compute F(| - |*), when —n < a < 0. Using the definition

of the Gamma-function, we see that

®© e 2 ®© [e] (8
f s 2 lemslel s = |x|af s72 e 5ds = \a:‘]OT(—g),

0 0

Therefore,
@ Q0
FUNE =gy | 7 T ds = s [ st E e s
F(_%) 0 z%r(_z)
1 62 -5-35-1 . 62 2a+2r(a+n) .
e Mo I B e =T
2I(=5) Jo \ds 4s r(—2)

where we impose the condition —n < « < 0 to ensure the boundedness of the I'-function.

In particular, for n = 3 and o = —1,

#1700 = Yo = 2,

from which it follows that
Z-1(]. |2 _ jr1
F ) = 43 (3.0
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3.8 Applications to the Poisson, Heat, and Wave
Equations

The Poisson equation on R3

In Theorem we proved the existence of unique weak solutions to the Dirichlet
problem on a bounded domain 2. We will now provide an explicit representation for
solutions to the Poisson problem on R?. The issue of uniqueness in this setting will be
of interest.

Given the Poisson problem
Au=f in ' (R"),

we compute the Fourier transform of both sides to obtain that

A~

—lel*a(e) = f(g). (3.7)
Distributional solutions to are not unique; for example,
PN (3 PN 1)
= d = — )
1O = g WO = g

are both solutions. By requiring solutions to have enough decay, such as u € L*(R™)
so that @ € L*(R®), then we do obtain uniqueness.

We will find an explicit representation for the solution to the Poisson problem

when n = 3. If u € L?(R?), then using we see that u(§) = 1), thus

[
* f() * - ® 0 P
u(e) = (15 ) @) = [ Z 1)« 2 (D)) = (@ f)(w).
where ®(z) = 47Tl|x| The function ® is the so-called fundamental solution; more

precisely, it is the distributional solution of the equation
AP =46 in ' (R").
Conceptually

—A@%f) = —ADx f
=0ox f=f V[fe%(R") whenever &+ f makes sense,
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where the first equality follows from the fact that

(A@*f), ) = 2m) 3~ [PRF, o) = (2m)3(F (AD), fy)
= (2m)3(AD, F(fp)) = (AD, f+ ) = (AD*f, ).

EXAMPLE 3.28. On R?, A(e™ cosxy) = 0. The function e cos 5 is not a tempered
distribution because it grows too fast as x; — o00. As such, the Fourier transfor of
e® cos Ty 1s not defined.

Using Fourier transform to convert PDE to linear algebraic equations only provides

those solutions which do not grow too rapidly at co.

3.8.1 The Poisson integral formula on the half-space

Let 2 = R™ x R, and consider the Dirichlet problem

0 07 0 0’ :
<ﬁ+a_x%+...+ax%)u:(w+A)u=0 in Qx (0,00),
u(-,0) = () on Q x {t = 0}

for some f € .#(R"). Note that for any constant ¢, ct is always a solution as it is
harmonic and vanishes at the boundary ¢ = 0, so for uniqueness, we insist that u
be bounded. This in turn means v is in .”(R") and hence we may use the Fourier

transform. Applying the Fourier transform (in the = variable) .%,, we see that
(32
CHFEN = [(P(Fa)Er)  V(EH R xR,
(Fou)(€,0) = f(€) VEeR".

Therefore, (F,u)(&,t) = C1(€)elél+Cy(€)e "l and C(€) = 0 by the growth condition
imposed on u. Then (Z,u)(€,t) = f(£)e ¢! and hence using (3.5),

w(x,t) = Fr(f()e M) (@) = [Zr(e ) » f]()
I tf(y)
2 Lw

2+ |z — )

This is the Poisson integral formula on the half-space.
If f is bounded; that is, f € L*(R"), then the integral converges and u € L*(R" x
R, ). Therefore, ue €°(R" x Ry) n L?(R™ x R, ).
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3.8.2 The Heat equation

Let t = 0 denote time, and = denote a point in space R*. The function u(z,t)
denotes the temperature at time ¢ and position z, and g € .#(R") denotes the initial

temperature distribution. We wish to solve the heat equation

ug(z,t) = Au(x,t) V(x,t) e R" x (0,00), (3.8a)
u(z,0) = g(z) VzeR" (3.8b)

Taking the Fourier transform of (3.8)), we find that

ata(£7t) = —|§|2@(§,t),
u(€,0) =g(¢)-
Therefore, u(&,t) = §(§)e*|5|2t and hence
u(z,t) = Z*(G()e 1) (2) = [F7 () + g] ()

— —(47T1)n/2 JRH e—lzZ;AQg(y) dy ( = (%(7 t)*g) (l‘)) , (39)

jz?

where 7 (x,t) = sexp (— Z—t) is called the heat kernel.

(4rt)n/
THEOREM 3.29. If g€ L*(R"), then the solution u to (3.8)) is in € (R x (0,0)).

a4t
——— is €*(R" x [a, 0)) for all a > 0.
(It is € ( [a, 00)) for all « o
REMARK 3.30. The representation formula (3.9) shows that whenever g is bounded,
continuous, and positive, the solution u(z,t) to (3.8)) is positive everywhere for ¢ > 0.

Proof. The function

The representation formula (3.9) can also be used to prove the following

THEOREM 3.31. Assume that g € €(R™) n L*(R"). Then u defined by (3.9) is

continuous at t = 0; that is,

lim  u(z,t) = g(xo) VageR™.

(I,t)ﬁ(20,0+)
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In order to study the Inhomogeneous heat equation

u(z,t) — Au(x, t) = f(z,t) V(xz,t) e R x (0,00), (3.10a)
u(z,0) =0 VreR". (3.10Db)

we introduce the parameter s > 0, and consider the following problem for U:

Ui(z,t,s) = AU(z,t,s),
Ulx,s,s) = f(x,s).

Then by ,
U(Iatv‘S) = %($—y,t—8)f(y, S)dy

Rn

We next invoke Duhamel’s principle to find a solution u(zx,t) to (3.10)):
t ¢
u(z,t) = f U(x,t,s)ds = J H(x —y,t —s)f(y,s)dyds. (3.11)
0 0 Jrn

The principle of linear superposition then shows that the solution of the equations

u(z,t) — Au(z, t) = f(z,t) V(xz,t) e R* x (0,00),
u(z,0) = g(z) VreRY,

is the sum of (3.9)) and (3.11):

wat) = | | eyt = s)avas + [ .00

= [H )@ + | [#Ct9) f0)] (@) ds. (3.12)

0

3.8.3 The Wave equation

For wave speed ¢ > 0, and for x € R, t € R, consider the following second-order linear

wave equation:
ug(x,t) = EAu(z,t) V(x,t) e R* x (0,00),

u(z,0) = f(x) VreRY,
u(z,0) = g(z) VoeR™
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Taking the Fourier transform of (3.13)), we find that

att(gat) = _62|£’2a(£7t> v (€7t) € Rn X (07 OO)?

a(&,0) = f(9) VEe R,
(£,0) = §(¢) VEe R,

The general solution of this second-order ordinary differential equations is given by

u(&,t) = C1(§) cosclé|t + Co (&) sinc|é]t.

Solving for Cy and Cy by using the initial conditions, we find that

~ sin c|&|t

(e ) = F(6) cosclelt +9(6) =

Therefore,

u(x,t) = [ﬁ*(cosc|-|t) * [+ ﬁ*<sinc|-|t> *g](x)

¢/
1[d sinc|- |t sinc|- |t
- —y*<—) *f+53*<—> *g](:v).
cldt N N
The 1-dimensional case. For the case that n = 1,

Jm sin ¢t SN D) - jm eila+et)A - pi@—ct)\ N
A 2i\

—m —m

By the Cauchy integral formula and the residue theorem,
f € dz = lim <J —I—J )e—dz
o % O+ N . z

ezz . imet® 1 0 icet®
=0 —dz—1 e df — i lim e db
0 eNot T

0
_ _Zf e—mS1n0+zmcosﬁd0+Z-7T’

where C' is the contour shown below.

Ay
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By the fact that lim J e~ms0df = () (which follows from the dominated conver-

m—00 0
gence theorem), we find that
mo iz
lim —dz =m.

m—o J_ .z

Therefore, for all t > 0,

1 (™ sincth 1 |z <ct
lim = [ €N = Xjajcan () = ’
1m J b\ € X{| |< t}(.l") { |J/" > of

—m

COROLLARY 3.32. 5‘*<8m‘c‘| ’t>(:c) = \/§X{|x<6t}($) in ' (R).

Proof. We first note that ’J e—dz’ < 2w for all m > 0; thus
“m %

rm

: .
sin c[&| it
J—m |€|

Now for all p € . (R),

dlﬁ*cmﬁ{HﬂﬂwWMf:J%mEFWQ*@ﬁ@MS

B 1 sin c[¢|t ¢
= | e teteade

m Ttct)€ 6i(x ct)€
dg‘:” e d§‘<27r Ym0, (3.14)
m )

By Fubini’s theorem,

™[ sincl¢]t i _ ™ osinclg|t e :
J J e pla)drde JJ ¢ Cel@)dsda;

thus estimate (3.14)) together with the dominated convergence theorem implies that

limf fsmcmt € () drd€ = lim ff SIS ise 1) deda

m—0o0 m—0o0 |§|

t .
JR maoof . Sm\?’ﬂ et p(x) dgdz = WJRX{III«t}(f)SO(?C) dv. o

We have thus established d’Alembert’s formula for the solution of the the 1-D wave

equation:

u(z,t) = m dtf f(z X{|y\<ct}( )dy +f g(xr — y)X{|y\<ct}(y)dy]

_ f(:c—ct)+f(x+ct) +20Jz ¢ e

2 x—ct
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The 3-dimensional case. Formally, we want to compute
inecllt i t .
ﬂ*(SHlC‘ ’ >(l‘) = lim J SlHC‘f‘ ewgdﬂ{%(f) .
-] m=0 Jiej<m  [€]
Note that if O is a 3 x 3 orthonormal matrix, |OT¢| = [£] for all £ € R?; thus the
change of variables formula implies that

. (sinc|-|t L sinc|OElt .

s1nc]77\t

(0T¢=n = lim L o e O dyia(n)
t
:nllli%o ﬂ' sin ¢|n| O g ()

gl<m 7]
Now, for each z € R®, choose a 3 x 3 orthonormal matrix O such that OTz = (0,0, |z|).

Using spherical coordinates, we obtain that

el It . .
gzl<smc| | )(x) _ lim ng sin ¢|n| el )
<m

N m—00 7]
™A sin cpt
= lim J f J elelPeose 2 6in o dOde dp
m—>OO 271'
1 sin cpt o=m
_ lim z|z|pcos¢> d
A/ 27 m—»oojo —@|x| ¢=0 P
1 m —icpt __ ,icpt ) )
- lim i(em\p — i) dp

V2m mew g 2||
1 0 . .
= 5 LD (efrlei=et) _ ginllelsed) gy ()
By the fact that
ey = [ [ g o),

we find that for ¢t > 0,

[ﬁ—l (Sin|<.:|| : |t) * (p] (x)

1 w ooy ‘
= — J f J — (elp(r—ct) _ 6Zp(|x‘+0t))g0(l’ _ TCU)T’2d,u1 (,0) d/ubl (7‘) dSw
T JoB(0,1)

—0o T

1 0¢] o0 ) )
| e ) o g ) ()i () S,
T JoB(0,1) J—c0 J—0

1
o(r — ctw) dS, = —

= — e(y) dSy .
4T Japo,1) amct Jop(a,er) Y
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Therefore,

1 0 1
)= —— ds +—[ f dS]. 3.15
u(, ) 4dmc?t LB(z,ct) 9(y) Y otldnclt 0B (z,ct) f(y) Sy ( )
We have just used the Fourier transform to find explicit solutions to the fundamental
linear elliptic, parabolic, and hyperbolic equations. More generally, the Fourier

transform is a powerful tool for the analysis of many other constant coefficient linear

partial differential equations.

3.9 Exercises

PROBLEM 3.1. (a) For f € LY(R), set Spf(z) = (27) 2 JR f(f)ei””gdf. Show that
-R

Suf(e) = Kn* f0) = [ Kalo = )50y

where
R

Kn(z) = <27r>1j e =

-R T

sin Rx

(b) Show that if f € L?*(R), then Sgf — f in L*(R) as R — 0.

PROBLEM 3.2. Show that for any R € (0,), there exists f € L'(R) such that
Srf ¢ L'(R).
Hint: Note that Kz ¢ L'(R).

PROBLEM 3.3. Assume w € .%'(R*) n L}

e(R") and w(z) > 0. Show that if w €
L*(R"), then w € L'(R") and

D ooy = (27) 72 ||| L1 (my
Hint: Consider w;(x) = ¢ (7)w(z) with ¢ € €*(R") and $(0) = 1.

PROBLEM 3.4. Consider the Poisson equation on R': wu,, = f.

|z]

z+ Jal and ¢(z) = - are both distributional solutions to

2

(a) Show that p(x) =

Ugpye = (50.



The Fourier Transform 109

(b) Let f be continuous with compact support in R. Show that u(x J o(x

y) f(y)dy and v(x J W(xz—y)f(y)dy both solve the Poisson equation w,,(x) =

f(z) (without relying upon distribution theory).

PROBLEM 3.5. Let T € .¢/(R") and f € S(R"). Show that the Leibniz rule for
distributional derivatives holds; that is, show that (f( fT) = 8T é’f T in the
T

sense of distribution.

PROBLEM 3.6. Let f(z) = e~*I*" and g(z) = e~*" . Find the Fourier transform of

f (and g) and use the inversion formula to compute f*g.

PROBLEM 3.7. Let d, denote the map given by d, f(x) = f(rxz). Show that

‘gz(drf) = T_ndl/ry(f) .

~

PROBLEM 3.8. Show that a function f € L2(R") is real if and only if f(—¢) = f(€).
PROBLEM 3.9. Find the Fourier transform of the function f(z) = ze®” for t < 0.

PROBLEM 3.10. Find the Fourier transform of 1(_, 4), the characteristic (or indicator)

function of the set (—a,a).
PROBLEM 3.11. Let f(z) = 1(gq)(z)e” " ; that is,

e ifr>0

f(x):{ 0 ife<o.

Find the Fourier transform of f for ¢t > 0.

PROBLEM 3.12. Find the Fourier transform of the function f(z) = z1|z|*, where x;
is the first component of x and —n —2 < a < —2.
Hint: Use the fact that for —n < a <0,

Z(lel)(E) = %

g (e

1 0 o
and f(a:) a+2(91:1| | .
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PROBLEM 3.13. Let a > 0 be given. Show that the Fourier transform of the function
9= oL [ et
)= —=—— e e
I'(e) Jo
is positive.
PROBLEM 3.14. Let f € L'(R). Show that the anti-derivative of f can be written

as the convolution of f and a function ¢ € L] (R).

PROBLEM 3.15. Let f be a continuous function with period 27, and fbe the Fourier
transform of f. Show that

j%£>:: }: (Vﬁgfﬁﬁ:ﬂé

n=—00
in the sense of distribution, where f,, is the Fourier coefficient defined by

1 2m
T or

PROBLEM 3.16. Using Definition , compute the Fourier transform of the function

In fl@)e ™ da .

x ifx>=>0,

R(z) = {

0 otherwise,

by completing the following:

(1) Let H be the Heaviside function. Show that i &) + C§(&) for some

1
=p.v.
P V2mi&

1
constant C', where p.v.g is defined as

< ’90> eﬁ0+f ] 53 dg*elﬂt)* J J 90(5

Note that the mtegral above always exists as long as p € Z(R).
(2) Let S(z) = H(x) —5 . Then S is an odd function, and show that S(¢) = —S(—¢) .
(3) Use (2) to determine the constant C' in (1).

(4) By the definition of Fourier transform, show that <]§, ) = —z<ﬁ] ,¢' ), and as a

consequence
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PROBLEM 3.17. The Hilbert transform of a function f : R — R is defined (formally)
by

(Hf)(x) = %p.vé x f = 1 lim /) dy .

T e—0% ly—z|>e £ — Y
1. Show that .7 (2 f)(€) = isgn(¢) f(€) for all f e L3(R).
2. Show that # : L?(R) — L*(R) is a surjective isometry, and 52 = Id.

PROBLEM 3.18. By (3.15)), the solution of the 3-dimensional wave equation

uy(r,t) = Au(z,t) in R®x (0,00), (3.16a)
u(z,0) = f(x) on R?®x {t=0}, (3.16b)
u(z,0) = g(z) on R?®x {t=0}, (3.16¢)

can be expressed as

1 0 1
u(w,t) = 4t LB(MQ 9(y)dSy + ot [47?0275 LB(LC,:) 1) dSy} )

Suppose that f € €2(R?) and g € €!(R?) so that they provide a solution u €
%*(R3 x (0,00)). Show that there exists a constant K > 0 so that

K
\u(a:,t)]<7 Vt>0.

Draw the same conclusion if f € W*Y(R?) and g € WH1(R3), and show that in this

case

=] Q

u(z, t)] < [Hg||wl,1(R3)+\|f||W2,1(R3)] Vi>0.

Hint: First rewrite (3.15)) as

) = g | 1900+ 500+ B as,

and convert the integral into an integral over B(x, ct).

PROBLEM 3.19. Let us consider the BBM equation

Up + Uy + Uy — Uggr = 0 VeeR,te (0,7], (3.17a)
u(z,0) = g(z) VreR. (3.17b)
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1. Use the Fourier transform to show that a bounded solution to (3.17) satisfies

u(z,t) = g(x) + Lt f“; K(z—y) [u(y, s) + %u2(y, s)]dyds, (3.18)

where K is defined by

K(x) = %sgn(:p)e"xl :

2. Write as u = F(u); that is, treat the right-hand side of as a function
of u. Show that for T" > 0 small enough, F' has a fixed-point in the space of
bounded continuous functions. (Hint: similar to the proof of the fundamental
theorem of ODE, you can try to show that the map F' is a contraction mapping

if T'is small enough, and then apply the contraction mapping theorem.)

Proof. (1) Take the Fourier transform of (3.17]), we find that

(14 &) (&,t) + iga(s, t) + %z@ﬁ(g,t) —0 VéeR,te(0,7], (3.19)
a(¢,0) = §(&) VEER. (3.19b)

is v/27 K, then

If we can show that the inverse Fourier transform of

2
+ 2
?? )

+ &2
0,t). By making a

3.18) follows from taking the inverse Fourier transform of and then time

1
integrating the resulting equality over the time interval (

change of variable £x = 2z, we find that

o0 . 0 .
f Lei&df:sgn(x)f Y

o 1+ &2 o 22+ 2P

Let Cr be the oriented boundary of the region {z € C||z| < R,Im(z) > 0}.
Then by the residue theorem, for R > |z,

r

e az = € &
2?2 4 12 j (2 +ix)(z — ix)
Cr
o ‘2(237). ¢®) = _ge™™ if x>0,
1T +1x
= (—ix)
o ) (—i) — _ 1o if <0,
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On the other hand,

12 ,
5 26sz2
24z

Cr

R ; T - 10

1z - 1Re o oL .

_ - 262Zd2+ — 26 Rsm@-‘rchosHZRezOde
S o R?e® +x

R ; ™ 2,26
1z ; R<e Chi g
_ J e dy — f : e Rs1n9+chos9d9 )

_p 22+ a2 o R2e?0 + g2

However, for any d € (0,7/2),

T 2,210
Re efRsinOJriRcoste
0 R2€219 + x2

T—0 i
- (J +J )Lezae—Rsin9+iRcosed6 .
[0,7]\(d,7—9) P R2e2i0 4 42 :

hence by the fact that the integral over (§, 7 — d) converges to zero as R — o0,

R2e 216 ) ]
lim sup ‘ J 2 *Rsm0+chos0d9‘ <26

R— 6226 + I‘Q

and by the arbitrariness of §, we eventually find that

€\ 1 [T i€,
(Fe) =75 L g - 5o - Vonro.

(2) Let M = {w e Cp(R x [0,77) ) Rm[ax] lw| < 2mﬂ§ax|g|} for some T to be deter-
x10,T

mined. Then M is a closed subset of C(R x [0,77]); hence M is complete. We
claim that for T" > 0 small enough, ' : M — M is a contraction mapping, then

as a consequence, F' has a fixed point in M which provides a unique solution to
the BBM equation.

Now suppose that v € M. Then

1 (" 1
|[F(u)] < max|g] + gf el [IU(?/, s)| + 5u(y, S)]dyds
0

< %) <
max g + T'max(|g| + [¢]”) < 2max|g]
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1

if T < —— . Moreover, if u,v € M,
1 + maxg |g|
|F(u) = F(v)|
L —|z—yl 1
<5 | e =l ) + 5w+ v (lu = vl)(y. 5) | dyds
0
T
< —[1+ 2max|g|] max |u—v| <k max |u— vl
2 R Rx[0,T] Rx[0,T]
: 2K :
for some constant x € (0,1) if ' < ——— . Therefore, F': M — M is a
1 + 2maxg |g|
. : 2K
contraction mapping as longas T' < ——. o
1 + 2maxg |g|

PROBLEM 3.20. In some occasions (especially in engineering applications), the

Fourier transform and inverse Fourier transform of a (Schwartz) function f are defined

by

f@ = flo)e ™ dr and flz)= | f(&)e ™ de.
Rn Rn
In this problem, we adopt this definition. Complete the following.
1. Show that f = f = f for all f e .(R").

2. Show the Poisson summation formula

Y fk)= D) fn) Ve (R).

k=—00 n=—o

3. Suppose that f € .#(R). Show that

$ - k)1 3 gy

k=—o0 T n=-—o
In particular, if f € .(R) and spt(]?) < [o, %],
for =Y famyeem veelo, ],

n=—00

~ 1
This suggests that if f has compact support in [O, T]’ f can be reconstructed
based on partial knowledge of f, namely f(nT).



Chapter 4

The Sobolev Spaces H*(R"), s € R

4.1 H?*(R") via the Fourier Transform

The Fourier transform allows us to generalize the Hilbert spaces H*(R") for k € N to
H*(R") for all s € R, and hence study functions which possess fractional derivatives

(and anti-derivatives) which are square integrable.

DEFINITION 4.1. For any s € R", let (§) = 4/1 + |£|?, and set
HYR") = {ue SR [{&*ue PR} = {ue ' (R")|A®ue L*(R")},
where A*u = .Z*((-)*q).

The operator A® can be thought of as a “differential operator” of order s, yielding

the isomorphism
H*(R™) = A°L*(R™).

DEFINITION 4.2. The inner-product on H*(R") is given by
(u, ) gsny = (Au, A*0)p2(mny Vu,ve H'(R").

and the norm on H*(R") is

HU'HHTS(RD) = (u,u)gsmny Yue H¥(R").

The completeness of H*(R") with respect to the | - |
completeness of L*(R").

me(rny is induced by the

THEOREM 4.3. For se R, (H*(RY), | - |

ms(rmy) s a Hilbert space.

115
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EXAMPLE 4.4 (H'(R")). The H'(R")-norm in Fourier representation is exactly the
same as the that given by Definition [2.15

ol = | @aOPdE = [ 1+ IR P
- | Qu@)P + 1Dula)?) da

the last equality following from the Plancheral theorem.

EXAMPLE 4.5 (H2(R")). The space Hz(R™) can be viewed as interpolating between
the decay required for 4 € L*(R") and u € H'(R"):

JRH\/WQ(S)P dé < oo} ,

EXAMPLE 4.6 (H '(R")). The space H!'(R") can be heuristically described as those

distributions whose anti-derivative is in L*(R"); in terms of the Fourier representation,

H3(RY) = {u e L2(RY)

elements of H~1(R") have Fourier “modes” that can grow linearly at infinity:

[ LT

nl+ |€)?

HY(R") = {u e 7' (RY)

For T e H *(R") and u € H*(R"), the duality pairing is given by
(Tyuy = (AT, Au) gy
from which the following result follows.
PROPOSITION 4.7. For all se R, H*(R") = H*(R") .

The ability to define fractional-order Sobolev spaces H*(R") allows us to refine
the estimates of the trace of a function which we previously stated in Theorem [2.44]
That result, based on the Gauss-Green theorem, stated that the trace operator was
continuous from H*(R%) into L*(R*!). In fact, the trace operator is continuous from
HY(R") into Hz (R™1).

To demonstrate the idea, we take n = 2. Given a continuous function u : R? — R,
we define the operator

Tu = u(0, xs) .

The trace theorem asserts that we can extend 7 to a continuous linear map from
H*(R?) into Hz2(R) so that we only lose one-half of a derivative.
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THEOREM 4.8. 7: H(R2) — H2(R), and there is a constant C such that

70l 13

Before we proceed with the proof, we state a very useful result.

< CHUHHl(R?) .

LEMMA 4.9. Suppose that u € 7 (R?) and define f(x3) = u(0,x5). Then

flen = — e eae,
Proof. f(&) = \/127 fRﬁ(&,&)d& if and only if
Flan) = <= [ a2 ) o) = 3= | | e @asieeas.

On the other hand,

~ 1 ~ i i
U(Q?l,.TQ) = 9*(u)(x1,x2) = 2—J J U(£1,£2)€ IShy 2£2d£1d§2,
™ Jr JR
so that
u0,22) = FH@(0.00) = 5 | | aler e derde :

Proof of Theorem[4.8, Suppose that u € .(R?) and set f(z2) = u(0,z1). According
to Lemma [£.9]

flen = - [ aten s = - [ e 0 © e
2 ([esren) (o)

and hence

&) < CJR 6, £)[2)%dE, fR €,

The key to this trace estimate is the explicit evaluation of the integral J E72dEy:
R

1 tan™! (\/i@) f1=+00 L ey i1
—_— < T2, .
J 1 _1_61 +€2 51 m £1=—o0 7T( +§2) ( )

Tt follows that j (1 +€2)3| (&) ey < C j (61, 6)[2(E)2dE,, so that integration of
R R

this inequality over the set {&; € R} yields the result. Using the density of .#(R?) in
H'(R?) completes the proof. 0
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The proof of the trace theorem for general Sobolev spaces H*(R™) spaces replacing
H'(R™) proceeds in a similar fashion; the only difference is that the integral f (&72d¢&,
R

is replaced by J &)7dEy - - - d€, 1, and its anti-derivative can also be computed.
Rn—1

The result is the following general trace theorem.

THEOREM 4.10 (The trace theorem for H*(R")). For s > %, the trace operator
7 H5(R™) — H*~3(R™Y) is continuous.

We can extend this result to open, bounded, ¢ *“-domains {2 < R".

DEFINITION 4.11. Let 02 denote a closed ¢ *-manifold, and let {w,}, denote an
open covering of 0€2, such that for each ¢ € {1,2, ..., K}, there exist €®-class charts
¥y which satisfy

9y B(0,7)) € R*' — w, is a ¥*-diffeomorphism .

Next, for each 1 < ¢ < K, let 0 < ¢y € €°(U,) denote a partition of unity so that
K

> pe(x) =1 for all x € 092 For all real s = 0, we define

=1

H*(0Q) = {ue L*(0Q) | |u]

Hs(0Q) < OO},

where for all u e H*(052),

K
HU‘JQLIS(aQ Z Pou) 019€||H3(Rn 1y -

The space (H*(052), | - |
of H*(R*™1); furthermore, any system of charts for 02 with subordinate partition of

ms(o)) is a Hilbert space by virtue of the completeness

unity will produce an equivalent norm.

THEOREM 4.12 (The trace map on H*(Q2)). For s > %, the trace operator T :
H3(Q) — H*2(0Q) is continuous.

Proof. Let {Z/{g , denote an n-dimensional open cover of 0€2 such that iy N 0€2 = wy.
Define charts ¥, : V) — Uy, as in - ) but with each chart being a ¥*-map, such
that 9, is equal to the restriction of ¥, to the (n — 1)-dimensional ball B(0,r,) < R*"'.

Also, choose a partition of unity 0 < (, € €°(U,) subordinate to the covering U, such
that Yy = Cg|w£.



Sobolev Spaces H*(R"), s € R 119

Then by Theorem 4.10} for s > %,

Fa(eny < Cllu

|l %JS(Q)' O

K
) S C [ (speu) 0 0y

K

2 _

b oa) D I (peu) 09|
P -

2
HS_% (Rnfl

One may then ask if the trace operator 7 is onto; namely, given f € H S_%(R“_l)

1 . . .
for s > 3 does there exist a u € H*(R") such that f = 7u? By essentially reversing
the order of the proof of Theorem [4.8] it is possible to answer this question in the

affirmative. We first consider the case that n = 2 and s = 1.
THEOREM 4.13. The trace operator T : H(R%) — H=(R) is a surjection.

Proof. With £ = (£1,&5), we define (as one of many possible choices) the function u

on R? via its Fourier representation:

2 _ K e
u(&1,62) = Kf(§1)<£>2 )

for a constant K # 0 to be determined shortly. To verify that |ul|g1(ge) < ||f|\H%(R),
note that

| aopera - x| ferare

o L 1+ +8

- i foo |J?(§1)|2<§1>d§1 < O”inI%(R) ’

Q0 Q0

dSs d&y

where we have used the estimate (4.1]) for the inequality above.
It remains to prove that u(zy,0) = f(z1), but by Lemma[4.9] it suffices that

foo (&1, &)des = V2 f(&).

—0

Integrating @, we find that

f_ u(&1,62)dé = KJ?(&)\/ 1+¢& J_ mdfz = Knf(&)

so setting K = +/27/m completes the proof. O
A similar construction yields the general result.

THEOREM 4.14. For s > %, the trace operator 7 : H*(R") — H*"2(R™!) is a

surjection.
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By using the system of charts employed for the proof of Theorem [4.12] we also

have the surjectivity of the trace map on bounded domains.

1 . .
THEOREM 4.15. For s > 3 the trace operator T : H*(Q)) — H*"2(0€) is a surjec-

tion.

The Fourier representation provides a very easy proof of a simple version of the

Sobolev embedding theorem.

THEOREM 4.16. For s > g, if ue H*(R"), then u is continuous and

max |u(x)| < Clul| gs@n).

Proof. By Theorem [3.6] u = .Z*u; thus according to Holder’s inequality and the
Riemann-Lebesgue lemma (Theorem [3.23)), it suffices to show that

[6lpr ey < Cllull s @) - (4.2)

But this follows from the Cauchy-Schwarz inequality since
| e = | 1aeree as
Rn Rn
< ~ 2 23d 2 723d 2 < C
< (| tap@rd)’ ([ @)’ <cp

Hs(R®) 5

the latter inequality holding whenever s > g =
Holder’s inequality can be used to prove the following

THEOREM 4.17 (Interpolation inequality). Let 0 <r <t < o0, and s = ar+ (1 —a)t
for some av € (0,1). Then

s (mey < CHUH%IT(]R“)HUH}{?(IRH) ~ (4.3)

EXAMPLE 4.18 (Euler equation on T?). On some time interval [0, 7] suppose that
u(x,t), r € T2, t € [0,T], is a smooth solution of the Euler equations:
du+ (u-D)u+Dp=0 in T2 x (0,7],
divu =0 in T* x (0,77,
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with smooth initial condition u|;—g = uy. Written in components, u = (u', u?) satisfies

ul 4 ul, j j94+p,; = 0 for i = 1,2, where we are using the Einstein summation convention
. o ~ ou' 0
for summing repeated indices from 1 to 2 and where v',; = a—u and p,; = ap .
T4 xT;
Computing the L?(T?) inner-product of the Euler equations with u yields the

equality

1d S .

—— \u(a:,t)ﬁda:—l—[ (T u]u’daj—l—f piu'de =0.

2dt Jpe T2 T2

pa T
Notice that ) .
I, = —J (\u|2),j W dr = —f lu|* divudr =0,
2 T2 2 T2

the second equality arising from integration by parts with respect to 0/0x;. Integration
by parts in the integral Z, shows that Z, = 0 as well, from which the conservation law
£Hu(-,t)H%2(T2) follows.

To estimate the rate of change of higher-order Sobolev norms of u relies on the use
of the Sobolev embedding theorem. In particular, we claim that on a short enough

time interval [0, 7], we have the inequality

d
Oy < Clut )z 2 (4.4)

from which it follows that |u(-, t)H%{S(TQ) < M for some constant M < c0.
To prove (4.4), we compute the H3(T?) inner-product of the Euler equations with

5 dt” u(-,t ||H3 72y + 04Z<3J D*(u',; v ) D*u' dx + |QZ<3J Dp,; D*u'dx = 0.
The third integral vanishes by integration by parts and the fact that D*divu = 0;
thus, we focus on the nonlinearity, and in particular, on the highest-order derivatives
|| = 3, and use D? to denote all third-order partial derivatives, as well as the notation
l.o.t. for lower-order terms. We see that

D?(u',j v ) D' dw = J D*u'; v D' dx

T2 T2
.

>

K1
+J ui,j D3u? D3 dx+f l.o.t. dz.
T2 T2

J

g

K2
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By definition of being lower-order terms, f lLot.dr<C HuH%g(Tg), so it remains
T2

to estimate the integrals IC; and Ks. But the integral Ky vanishes by the same
argument that proved Z; = 0. On the other hand, the integral Iy is estimated by
Holder’s inequality:

”CQ’ < ||ui,j HLoo(Tz) \|D3uj||H3(Tz) HDguiHH:;(TQ) .

Thanks to the Sobolev embedding theorem, for s = 2 (s needs only to be greater than
1),

[t e (r2y < Cllt s [ m2erey < sy
from which it follows that Ko < Cllulf3;s (r2)> and this proves the claim.
Note well, that it is the Sobolev embedding theorem that requires the use of

the space H?(T?) for this analysis; for example, it would not have been possible to
establish the inequality (4.4) with the H?(T?) norm replacing the H3(T?) norm.

4.2 Fractional-Order Sobolev Spaces via Difference
Quotient Norms

The case that s > 0

LEMMA 4.19. For 0 < s <1, ue H*(R") is equivalent to
ue L*(R"), ff ]u Ol dzdy < o0
’ZL'— |n+2s ’
R" xR?

Proof. The Fourier transform shows that for A € R",

| e+ by —utde = [ e apae)ae - [ sttt apac.

Rn
It follows that

]u (y)]? sin® ﬁ
y‘n+25 dl’dy - ’h‘n+2s ‘ dfdh

R xRn Rn xRn

RGN Vj_g i) de
£

sin?(z - &)
(ltting h = 21| 1) = 277 fRn €1 la(e)? [ JRD Wmfdz] dg .




Sobolev Spaces H*(R"), s € R 123

As the integral inside of the square brackets is rotationally invariant, it is independent
of the direction of £/|¢|; as such we set £/|¢| = e; and let z; = z - e; denote the first

component of the vector z. It follows that

J] = ey - o [ ePrato e,

x Rn

sin® z;

dz < oo since 0 < s < 1. o
|n+2s

where C' =

R |2

COROLLARY 4.20. For0 <s <1,
lu(w) — wl)? ;1
ey = [l + [ b dod]
RnXRn

is an equivalent norm on H*(R").

For real s > 0, u € H*(R") if and only if D € L*(R") for all |a| < [s] (where [s]
denotes the greatest integer that is not bigger than s), and

| Du(x) — Du(y)P?
Jf |x— |n+2 =) dxdy < oo

RoxRn

for all |a| = [s]. Moreover, an equivalent norm on H*(R") is given by

. Dou(a) = Dou(y) 1b
|l s mo) Z[ Z |D UHL? Q(R») ff |$_ |n+2 —[s]) dmdy]

lal<[s] R xR0

D) = Dol 18
— 1l + H |$_ |n+2(s L dady]” (4.5)

R xR™

If ue HE*(R"), k e N, and ¢ € .7 (R"), application of the product rule shows that
ou € H*(R™). When s ¢ N, however, the product rule is not directly applicable and

we must rely on other means to show that pu e H*(R").

LEMMA 4.21. Suppose that uw € H*(R") for some s = 0 and ¢ € #(R™). Then
pu € H(R").

Proof. We first conisder the case that 0 < s < 1.
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By Corollary since pu is Clearly an L?(R")-function, it suffices to show that

H wu ,n+23(y)|2 dedy < o0

R xR®

Since |(pu)(x) = (pu) (V)] < le(x) = e()[[ulz)] + |u(z) = u¥)lle),

H ( w|x_y|n+23( )|2dxdy

R xR»
2 _ 2 2
f (e y)*|u(z)] +IU(2:6) u(y)*le(y)| dedy
|z — y|nt2s
RnXRn
[p(z) — () *|u(@)[? u(z) — uly)?

Jf ‘:E _ y|n+25 dxdy—f_QHSDHL” (R®) W d:Edy .

Rn X Rn Rn XRH
Il %;

Since u € H*(R"), Zy < 0. On the other hand,

VR R W 7t

For the integral over |z — y| < 1, since ¢ € . (R"), |p(z) — ¢(y)| < Clx — y| for some

constant C'. Therefore,

Jn L Jl<t ‘x_(y|r)1‘+2’s( 2 dzdy

c f j 2 — P u(e) [ dedy
n Jlz—yl<1
< C’J 2P % dz | |u(2)|?de < o if s <1.
<1 R®

For the remaining integral

[f s,
» Jlz—y|>1 |x—y|
<4||‘P||L°O(]Rn)f f 2 —y| 7" |u(2)|? dedy
n Jlr—yl<1
<Alloe [l [l <o s> 0.
z|=1 R

2=

The general case of s > 0 can be proved in a similar fashion, and we leave the details

to the reader. o
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The following theorem shows that H*(R") is a multiplicative-algebra; that is,
fge H*(R") if f, g e H*(R"), provided that s > g

THEOREM 4.22. Let s > g be a real number. Then there exists a generic constant
C, > 0 such that

o]

Proof. Assume that u,v € H*(R"). Since

€ =1+ ¢ < (1+206—n*+2n)?
<23 (€ —m)? + %) < GLE - + )],
where Cy can be chosen as 22 if n < 4, or 2°' if n > 4, by the definition of the

convolution we find that
(@0 j @t - mamdn
<G| =+ @l - mowlin
-l | ke=nrate—wliamldn+ | fat — o)lla o]
- cs[(w < [3)(&) + ([l + 81)() |

where wg(z J (%W (&)e™ duy (€) is the inverse Fourier transform of (-)*@(-). As

a consequence,

wan = [ [ rmera] = [ [ @@ oera]
1

= 5| | @ l@x D©Pa]
i [0] -+ [a] % |4

< i‘“u
~ \/%n S

while Plancherel’s formula and Young’s inequality further imply that

o]

2oy

[165] 5 8] + ] % 1551 2 gmy < 1] % 31] 2 gmy + 18] % 1551 2 g
< ]| Loy 0] 2 oy + [ll 22 oy [ 05 22 e
= HusHL%Rﬂ)H@HLl(Rn) + H@HLl(Rn)HvsHLQ(Rn)

< 27" 2 @en [ul

e (&) ||| s (m) S
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where (4.2]) is used to conclude the last inequality. Estimate (4.6]) is then established
2C5 1<% L2 mmy
RV o ‘

]

by choosing C, =

4.2.1 The dual space of H*(R") for s > 0

For s > 0, let H*(R")" denote the dual space of H*(R") with corresponding dual space

norm (or operator norm) defined by

U<u,—v> =  sup {u,v).

|w| s (rey = sup
Hs(Rm) [v] grs @ny=1

veHs (Rn)

Let u € H*(R")" be given. Since H*(R") is a Hilbert space, the Riesz representation

theorem implies that there exists a unique w € H*(R") satisfying

{u, vy = (W, ) s (mn) Vve H*(R"), (4.7)
and the operator norm of u is the same as the H*(R")-norm of w; that is,
Hs(Rn) - (4.8)

Moreover, since . (R") € H*(R"), u € H*(R")" is a tempered distribution; thus the

definition of the Fourier transform of a tempered distribution implies that

{79y = 0,70y = (u, (79) = (W, 0070) oy V€L (RY).

[lzrs ny =[]

Using f = f, where ~ denotes the reflection operator, we find that
(O = [ @ AOTDTAR e - | ©°a(-0p6) de
(T )y VSR,
Since w € H*(R™), (-)*w € L*(R"); thus by the fact that .7 (R") is dense in L*(R"),
the equality above implies that (-)™*u € L*(R™)’ and

||<'>_S{L\HL2(R") = sup <<‘>—sa7 90> = sup (<>sﬁ>a 90) L2(Rn)
”S"HLZ(mn):l ”S"HLQ(RH):l

= H<'>S{U\HL2(RD) = H<'>S@HL2(Rn) = |lwl

As a consequence, we conclude from (4.8)) that

oy = [ | @ 1aOPde]” = - (4.9)

In other words, for s > 0 the space H *(R") = H*(R")".

Hs(Rn) .

i
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4.3 The Interpolation Spaceﬂ

Given t > 0, let

) 1/2

K(turs)= it e +
ureH" (R™),use H* (R")

For a € (0,1), define the interpolation space (H"(R"), H*(R")) by
Q0
(H"(R™), H*(R")) = {u’ J IR (tuyr, s)2dt < oo}
0
equipped with norm
* —1—2« 2 1/2
]|z (mny, s ()0 = [ t K(t,u;r,s) dt] )

0

Our first goal in this section is to show that the space (H"(R"), H*(R")) is the same

as Hos+(1=2)"(R"). To be more precise, we shall prove the following

PROPOSITION 4.23. Let 0 <r < s <o, and € (0,1). Then

o]
f t—l—QOCK<t’ U; T7 S)th - CO[HUH?{&T+(1,&)S(R“) 3 (4.11)
0

0 t1—2a T
< 0.

where C,, = J

o t2+1 " 2sinan
Proof. By the definition of the Sobolev space H"(R"),

U=Up+Us
upeH" (RM) uge H* (RD)

Kiturs = it [ [ (6©P©" + 2@k

where we recall that (¢) = (1 + |£[>)¥/2. For each ¢ € R", choose A(§) = 7(£)e?©
minimizing
IMEPE™ + [a(€) — A(E)[*€)*
= 1(§)*((© + &)™) — 2t%Re(@(€)e™")()*r(€) + *[a(e) (€)™ .
Such an (7"(5), 9(5)) must satisfy

_ t2<£>28
€ + 135

'Readers should skip this section on first reading.

r(&) Re(ﬁ(f) eie(g)) and 0(&) = arg(ﬁ(S)) )
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In other words, if u, and u, are given by

2 236i9(§) ) 2 2s
t <§> Re(ﬁ(f) 6—10(5)) _ t <£> A(é)

ﬁ (5) - /\(5) <§>27" t2<§>25 <§>27" + t2<§>2su
and e
72\5(6) = a(f) - a\r(f) = <£>27~ + t2<§>28a<€)7
then

Kiturs) = [ | (80RO +Elaore*)de]

[, i rmmera]”

As a consequence, by Tonelli’s theorem

1—2« * tl 204<§>27“ 2
Lt K(tur, $)2d JJ e s (€ P

=@y = Ca | (P dE

— Ca HuHHas+(17a)'r(Rn) 9

o0 t1—2a

where the constant C, is given by f mdt. O
0

THEOREM 4.24. Suppose that 0 < r;1 < s1 < 0 and 0 < ry < S9 < 0. Let
Ae B(H*(R"), H>(R")) n B(H™(R*), H™>(R")); that is, A is linear and satisfies

| Aw] gz gy < Molw]gri gy, A sz @y < Myfufgs @) -

Then A e %(Hasﬁ-(l—a)rl (Rn), Hoesg-i-(l—a)rz(Rn)); and
At -y < V2ME M g 0 oma - (112
Proof. Let u e H*1+(1=2)r1(R™) By Proposition m

Giltouy= it e +
ureH (R™) s H1(RD)

< V2K (tu;ry, s1) < o

Hs1 (Rn)]
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for almost all ¢ € (0,0). For each decomposition u = us + u, with u, € H*'(R") and
u, € H™(R"), we have Au = Au, + Auy; thus

Gg(t, AU,) = mf |:HU7"||HT2 (Rn) + t||1)5|
Au=v,+vs
vreH"2 (R™),vse H2 (R™)

He2 (]R“)]

< [Avp| e ey + 8 Avs| 2 @ny < Mollur| gy + EMa s o1 )

tM
= Mo (Jutl sy + L )

Mo

Taking the infimum over all decompositions of u, we find that
tM tM
K(t, Au;ry, s9) < Go(t, Au) < M0G1<—1,U> < \@MOK<—1,U; 1, 31> .
My My
Therefore, (4.11]) suggests that

o0
C’a‘|AuH§{asg+<17&)7‘2 (Rn) = J t_l_zaK(ta AU, T27 32)2dt
0

» M 2
< 2f t’l’QO‘MgK<—1,u; 7’1,31) dt
0 MO

Q0
= ZJ MI*ME2 2 K, u; 7y, 51)%dE
0

— 2CQM372QM%QHquqasl#—(l—a)rl (Rn) . o

COROLLARY 4.25. Let s > g be a real number. Then there exists a generic constant

Cs > 0 such that for all 0 < r < s,
[uv| g ey < Cslw| gs@myl|v]| e @y Vue H*(R") and ve H"(R"). (4.13)

Proof. Let uw € H*(R") be given, and define a linear map A by Av = wv. Then
Theorem implies that A € Z(H*(R"), H*(R")) with estimate

| Av|

HS(RH) < CSHU‘ Hs(Rn)”U’ Hs(Rn) V/U € HS(RH) .

Moreover, by the Sobolev embedding (Theorem [4.16)),

| A p2gny < e 0] 2@y < Clulm@nlvlzz@n Yo e L2(R)
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which implies that A € Z(L*(R"), L*(R")). Therefore, Theorem implies that
Ae B(H"(R"), H"(R")), and for v € H"(R"),

He@n)) * [0 e

@) * (Clul

HS(R“)”UHHT(]R“) )

| Av ] ey < V2(Cillul
= Cyful

where C, = m[ax] V205l < o, o
rel0,s



Chapter 5

Fractional-Order Sobolev Spaces on
Domains with Boundary

S (TN
5.1 The Space H*(RY)
Let R} = R*! x R, denote the upper half space of R".

The case s =ke N

The space H¥(R%) is the collection of all L*(R%)-functions so that the a-th weak
derivatives belong to L?(R%) for all |o| < k; that is,

HYRY) = {u e L2(R") ‘ Doue LA(R) Vol < k;}

with norm

=

a 2
uleesy = | D 1Dl | (5.1)

la|<k

Note that we are not able to directly use the Fourier transform to define the H*(R%).

DEFINITION 5.1 (Extension operator E). Fix N € N. Let (aq,- - ,ay) solve
N .
D=yt a1, £=0,-- N-1.
=1

We denote by E : €(R%) — €' (R") the function

u(z) if x,>0,

(Bu)(z) = % (5.2)

aju(z’,—2"7z,) if =z, <0.
Jj=1

131
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Note that the the coefficients a; solve a linear system of N equations for N

unknowns which is always solvable since the determinant never vanishes.

THEOREM 5.2 (Sobolev extension theorem). For any N € N, the operator E defined
in (5.2) has a continuous extension to an operator E : H*(R%) — HF(R™) for all
E<N-1.

Proof. We must show that all derivatives of u of order not bigger than N — 1 are

continuous at z, = 0. We compute D! Eu:

D! u(x) if z,>0,

Tn

N
> (=120 (DL u) (2!, =2 Tx,)  if a2, <0.

j=1

D, (Bu)() =

By the definition of a;, lim D! (Eu)(z) = lim Df (Eu)(z). So Eu e H*R").
z1—0 x1—0~
Finally, the continuity of E is concluded by the following inequality:

| B g mny < CHUHH'@(RI;)- =
REMARK 5.3. The extension operator E given by also has the property that
“Eu“Hk(B) < OHUHH’“(BJr) Vue Cgk(Bﬁ”) M Hk(B+) )
where B < R" denotes a ball in R®, BT is the upper half part of B; that is, BT =
{y=(y1,- ,yn) € B|ya > 0}.

LEMMA 5.4. For ke N, each u e H*(RY) is the restriction of some w € HF(R™) to

n ) = n
RY, that is, u = wlgn .

Proof. We define the restriction map o : H*(R") — H*(R?}). By Theorem [5.2] the

restriction map is onto, since o = Id on H*(R%). al

The case s is not an integer

Next, suppose that N —2 < s < N — 1 for some N € N given in (5.2)), and let FE
continue to denote the Sobolev extension operator.
We define the space H*(R") as the restriction of H*(R") to R’} with norm

HU| HS(R?r) = HEU‘ HS(RD) . (53)



Sobolev Spaces H*(f2) for s € R 133

When s = k € N, it may not be immediately clear that the H*(R")-norm defined by

(5.3) is equivalent to the H*(R™)-norm defined by . Let | - |1 be the norm defined

by and || - |2 be the norm defined by (5.3). It is clear that |juf; < |u[2, and by

the continuity of F, ||uls < C|u|;; therefore, || - |; and || - |2 are equivalent if s € N.
For s ¢ N, motivated by Lemma (or (4.5)), we in fact have the following

THEOREM 5.5. For s >0 and s ¢ N, then | - |

He(Rn) 18 equivalent to the norm

1

| [Dufw) = Duly)P 1
el oy = |l g + Z ‘x_y‘m Ty Ay

ld=ls]gn"Rn

Proof. Recall that the norm ||w||

Dule) - Dl )
Follo = [Foliooe + 3 [ Pt asa]

|a| Rn xR0

s (R defined by

is equivalent to the norm |w| gsmn), so it is clear that \Hu|\|H5(R1) < C1| Bu| s mny for
some constant C; > 0 since Fu = u on R} .
For the reversed inequality, since

f | D*( Eu — D*(Eu)(y)|”

|n+2 —[sD)

ﬂ IR RS R

Ru XR“ Rn XRH Rn XRH Rn

dxdy

R xR®

by the boundedness of the extension operator we find that

DO‘ E D¥(FE 2
| B3, (Rv) HEuHH [)rn) T Z J | |Z>( )|n+2 ([ ])u)(y)| dxdy
lo|=[s]pn o0
2 [(Du) (2, =2 w,) — (Du)(y', =2 yn)[?
C[”U‘ Hs®Rn) T Z ’x — y’n+2(si[s]) dxdy

1$]<|a‘:[S]Rn Rn

v 2 e e ]

1Sislol=[slgn"sRy
| Du(x) — Du(y)|”
[||U\H3(Rn + Z ff \x— ‘n+2 ) dxdy]
led=ls]gn" e

which implies |Eul gs@n) < C||Eul

thus the equivalence of these two norms is established. O

oeny < Cofluf Ho(RR) for some constant Cy > 0;
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5.2 The Sobolev Space H*({)

We can now define the Sobolev spaces H*(§2) for any open and bounded domain
Q) < R™ with smooth boundary ).

DEFINITION 5.6 (Smoothness of the boundary). We say 02 is € if for each point
xo € 02 there exist r > 0 and a €*-function v : R*~! — R such that - upon relabeling

and reorienting the coordinates axes if necessary - we have
Q n B(zg,r) = {yc € B(xo,r) ‘ o > y(xg, - ,xn,l)} )

0N is €% if 0Q is €* for all k € N, and  is said to have smooth boundary if 02 is
C”.

DEFINITION 5.7 (Partition of unity). Let X be a topological space. A partition of
unity is a collection of continuous functions {x; : X — [0, 1]} such that }; ixi(T) =1
for all z € X. A partition of unity is locally finite if each x in X is contained in an
open set on which only a finite number of x; are non-zero. A partition of unity is

subordinate to an open cover {U;} of X if each yx; is zero on the complement of U;.

PROPOSITION 5.8. Let Q € R™ be a bounded set, and {Uy,}5_, be an open cover of

Q. Then there exists a partition of unity {(n}E_, subordinate to {Un}E_, such that

{Van}m_, S CZ(RY).

Proof. For an open set U and § > 0, define U9 as the collection of interior points z of
U such that dist(z, 0Q) > 6. Then U® is open. We first show that there exists § > 0
such that {Z/{T(,f)}i

_, is still an open cover of Q. If not, then for each k € N, there

K
exists z, € 2 such that z;, ¢ UMY Since Q is bounded, {xy};~; has a convergent
m=1

subsequence {:ckj}jozl converging to x € . This limit # cannot belong to any U,,, a
contradiction to that {4, }X_, is an open cover of Q.

_ K
Now suppose that Q < [ J UL for some § > 0. Let Xm be the characteristic

m=1

function of uﬁ‘f); that is,

1 ifretd?,
Xm(T) =

0 otherwise,
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and {n}e=0 be the standard sequence of mollifiers. For m € {1,--- | K}, we define

52
= =2 and (= —am
Sic1 78 % X; DI

Then 0 < ¢, < 1, spt((n) € Up, and /¢, € €F°(R?) for all 1 < m < K, and
K

Ug*Xm

K
S &n =Y Gn=1. In other words, {(,,}X_, is a partition of unity subordinate to
1

m= m=1

{Un}E_| satisfying that 1/, € €*(R?) for all 1 < m < K. o
For a bounded €*-domain €2, there exist p1,---px € 0, r1,-- -1 > 0, €*-maps

1, -+, 7k such that - upon relabeling and reorienting the coordinates axes if necessary

- we have

Q A B(pm,rm) = {x € B(pm,rm) ’xn > Y (@1, 1)} Vme{l,---,N}.

Then for each m € {1,---, N}, the function ¥,, defined by

19m<x> = (Ilv s, Tn-1, 7m(x1a e axn—l) + IEn) (54)

is a ¢*-diffeomorphism between a small neighborhood V,, of R* and B(pm,, 7 m).
Moreover, ¥, also maps V,, n {zx, > 0} diffeomorphically to the upper half part of
B(pm,Tm). On the other hand, if such €*-maps ¥, - - - , U exist (such that the union
of images of 9, covers dQ), then  is of class €*. Therefore,  is a bounded ¢*-
domain if and only if there exist an open cover {U,,}X_, < R® of dQ and a collection
of €*-maps {¢,,}5_, (each ¢,, is the inverse of ,,,) such that for each 1 < m < K,

Gt Upy 0 0 — V,, € R

is one-to-one, onto, and has a €*-inverse map for some open subset V,, of R* 1

Let {(;}2, be a partition of unity subordinate to the open cover {U;}}_, such that
V¢ € €2 (U;), and define vy = (ou and v; = (Cju) o ¥;. Then vy can be treated as a
function defined on R", and v; can be treated as a function defined on R%. We then

have the following

DEFINITION 5.9. The space H*(2) for s > 0 is the collection of all measurable u
such that the function (yu € H*(R") and ((ju) o ¥; € H*(R}). The H*(2)-norm is
defined by

N
/
%S(Rn) + Z H(CJU) © 19]" i{s(Rg)] '

7=1

Julr=oy = [ IGou]
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THEOREM 5.10 (Extension). Let 2 be a bounded, smooth domain. For any open set
U such that QccU, there exists a bounded linear operator E : H*(2) — H*(R") such
that

(i) Bu=u a.e. inQ,
(ii) Fu has support within U ,

(iii) |Eu|pr@ey < Clulgrq) for all 0 < r <'s, where the constant C' depends only
on s, Q and U.

Proof. Let {U;}_, be an open cover of dQ such that for each j e {1,--- N}, U; = U
and there exists a collection of smooth maps {1}, such that ¢; : U; — R™ is a
diffeomorphism between a small neighborhood of R". Choose Uy <=2 so that {U;}1<,,
is an open cover of Q, and let {(; }szo be a partition of unity subordinate to {U; }le

such that /(; € €°(R") whose existence is guaranteed by Proposition . Define

Bu= G+ DVG [E((W/Gwe,)] 0077].

where F : H*(R%) — H*(R") is the continuous extension defined by (5.2)) for some
k = s. Then E satisfies properties (i)-(iii), and the proofs of these three properties are

left to the readers. o

THEOREM 5.11 (Rellich’s theorem in H*-spaces). Suppose that a sequence {u;}7>,
satisfies for s€ R and 6 > 0,

sup [ u;|
J

Hs+6(Q) < M < o

for some constant M independent of j. Then there exists a subsequence u;, — u in
H*(Q).

Proof. Let u; be a bounded sequence in H*™({2). We show that there exists a
subsequence u;, of u; and u € H*(Q2) such that lim |u;, — u|gs@) = 0.
j—0
Let E be the extension operator defined in Theorem , and v; = Buy, v§ = ne* vy,

where 7). is the standard mollifier. We first claim that v§ — v; in H*(R") uniformly in
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n. In fact,

05 = v5]

ey = | IVER"T) 1750 d
<[ YV oy 2

+ 4 sin
(1+¢€)° 2

for all € € (0,1), where the inequality follows from

Vi) 1] (o
G =[], ne &

Hs+6(]Rn)

—— if[¢| > R,
< (1+ R?% 1
4sin? & if\§]<R<—<<z).
2 € €
Therefore, for any given € > 0, there exists € > 0 such that
€ ,
V5 — vl s @my < - VjeN. (5.5)

3

Now, for this particular € > 0, v} is uniformly bounded and equi-continuous since
05| < |7e] 2@ 105 | L2@ny < Ces |DUS] < Dl L2y [0 2 ey < Ce -

Therefore, by Arzela-Ascoli theorem, there exists a subsequence v, converges uniformly
in €°(R*) (or €°(U) to be more precise since the support of v§ can be chosen to be
inside a bounded open set U), or in particular
limsup [[v§, — 5, [z2@) = 0.
k. £—0o0

Moreover, by standard properties of convolution and the boundedness of F,

||U]k — ’U]e‘ Hs+6 R®) OHUM vj£| Hs+5(Rn) < CH’LL]k — Uj[| Hs+6(Q) < O,

hence interpolation inequality (4.3)) implies that

_6
limsup [[vj, = vj, |#sgey < C'limsup |05, — 5, [ 15pay = 0.
=0 k,0—o0
As a consequence, there exists N > 0 such that
/
€
|05, — S, | s mny < 3 whenever k, ¢ > N . (5.6)

The triangle inequality together with (5.5)) and (5.6 then suggests that v,, is a Cauchy
sequence in H*(R"); hence v;, — v in H*(R") as k — co. This implies uj, — u in

H*(2), where u is the restriction of v to . o
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Using the extension argument, the following theorems are direct consequences of
Theorem [£.17] Theorem and Corollary The proofs for these two theorems

are left as an exercise.

THEOREM 5.12 (Interpolation inequality). Let Q < R" be a bounded smooth domain,

0<r<t<oo, ands=ar+ (1 —a)t for some a e (0,1). Then

) < Cllul @ luling (5.7)

THEOREM 5.13. Suppose that 0 < r; < s1 < 0 and 0 < ry < S§o < 00. Let
Ae B(H*(Q),H?(Q)) n B(H™(Q2),H™(Y)); that is, A is linear and

me2(@) < Mifufpsq) -

| Aull @) < Mo|ullari),  [Aul
Then A e B(H+1-r(Q), Hes2+(1=e)r2(Q)) - and
| At] asa+1-airs (@) < CMy™ "M [t sy + 1-oim () (5.8)
for some generic constant C' > 0 (independent of u).

THEOREM 5.14. Let Q < R" be a bounded smooth domain, and s > g be a real

number. Then there exists a generic constant Cy > 0 such that for all 0 < r < s,

luv| @) < Cslulms@|v] e @ Vue H*(Q) andve H'(Q). (5.9)



Chapter 6
The Sobolev Spaces H*(T"), s € R

6.1 The Fourier Series: Revisited

DEFINITION 6.1. For v € L!'(T"), define

(Fu)(k) =uy = (27?)3J e~ ry(z) da

"H‘n

and for u € (*(Z"), define
(F*0)(x) = (2m) 72 Y Gpe’™™.

keZn
Note that .# : L1(T") — ¢*(Z™). If u is sufficiently smooth, then integration by

parts yields
F (D) = i™k*qy, k=K ke

EXAMPLE 6.2. Suppose that u € €1(T"). Then for j € {1,...,n},

ﬁ(a—u) (k) = (2n)7> L a—ue_ik'”: dx

0w, n 0T
= —(27?)“] u(x) (—ik;) e ™" da = ik, .
Note that T" is a closed manifold without boundary; alternatively, one may identify T"
with [0, 1]* with periodic boundary conditions; that is, with opposite faces identified.

DEFINITION 6.3. Let s = .(Z") denote the space of rapidly decreasing functions u
on Z" such that for each N € N,

p(u) = sup(k)™[ay| < o,
kezn

where (k) = 4/1 + |k|2.

139
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Then
F €T »s, F*:s5->C*(T"),

and Z*% =1d on €*(T") and .# .Z* = Id on s. These properties smoothly extend
to the Hilbert space setting:

F LT — (2 FF . 2(Z") — LA(TY)
F*F =1don LA(T") FF* =1d on (2(Z").

DEFINITION 6.4. The inner-products on L*(T") and ¢*(Z") are

(u,v) 2(m) = J u(z)v(z) dx

n

and

(@, 0)2(zny = U0
kezn

respectively.
Parseval’s identity shows that ||u|p2(m) = |uf|e2zn).

DEFINITION 6.5. We set
2'(T") = €°(T")".

The space Z'(T") is termed the space of periodic distributions.

In the same manner that we extended the Fourier transform from . (R") to .#'(R")

by duality, we may produce a similar extension to the periodic distributions:

F . 9'(T") — ¢ F*.§ — 9'(T)
F*F =1don 2'(T") FF*=Idons .

DEFINITION 6.6 (Sobolev spaces H*(T")). For all s € R, the Hilbert spaces H*(T")

are defined as follows:
H¥(T") = {ue 2'(T") | |ul =) < 0},

where the norm on H*(T") is defined as

keZ™

[
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The space (H*(T"),| - |

ms(m)) is a Hilbert space, and we have that
H™*(T") = H*(T")'.
For any s € R, we define the operator A® as follows: for u e 2'(T"),

Nu(z) = Z k) e

keZ™

It follows that
HS(TH) _ Afs L2(Tn>,

and for r, s € R,
A®: H"(T") — H"°(T") is an isomorphism .
Notice then that for any ¢ > 0,
A% H*(T") — H*(T") is a compact operator ,

as it is an operator-norm limit of finite-rank operators. (In particular, the eigenvalues
of A= tend to zero in this limit.) Hence, the inclusion map H**°(T") — H*(T") is

compact, and we have the following

THEOREM 6.7 (Rellich’s theorem on T"). Suppose that a sequence {u;}7>, satisfies
forse R and § > 0,

sup [ u;|
J

Hs+8(Tn) < M < oo
for some constant M independent of j. Then there exists a subsequence u;, — u in

H*(T™).

6.2 The Poisson Integral Formula and the Laplace
Operator

For f:S' — R, denote by PI(f) the harmonic function on the unit disk D = {z €
R?||z| < 1} with trace f:

API(f)=0 in D,
PI(f)y=f on 0D=S".



142 CHAPTER [6] THE SOBOLEV SPACES H*(T"), se R

PI(f) has an explicit representation via the Fourier series

PI(f)(r,0) = Y. fir™e™ Wr<1,0<0<2r, (6.1)

kEZ

as well as the integral representation

1—r? fle)
PI(f)(r,0) = o ng’l“Q—QT’COS(Q—QO)—Fld%D Vr<1,0<60<2m. (6.2)

The dominated convergence theorem shows that if f € €°(S'), then PI(f) € €*(D) n
€°(D).
THEOREM 6.8. PI extends to a continuous map from H*~ (Sl) to H*(D) for all

ke N u {0}.

Proof. Define u = PI(f).
Step 1. The case that k = 0. Assume that f € H~2(I') so that

MO ™ < My < 0.
e

Since the functions {€”|¢ € Z} are orthogonal with respect to the L*(S') inner-

product,

1 27 ~ . 2
i = | (] [ 7t

NIk f Py SRR+ ) < Al

T LT

d@) rdr

(s’

where we have used the monotone convergence theorem for the first inequality.
Step 2. The case that k£ = 1. Note that in polar coordinate, the gradient operator
V is given by

v:<cosei_sm98 mgi cos@&>‘

or r 00’ or r 00
To show that u € H'(D), it suffices to show that u, and %u@ e L*(D). Since the

functions {¢"’ | ¢ € Z} are orthogonal with respect to the L*(S') inner-product,

HUTH%Q(D) = Ll <f ‘Z |g|f7n|€| 1,0

£#0

= 2r SPIRE [ 0 = 3 AR < R

H2 (Sh)
£#£0 10

d@) rdr
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and similarly,

1 Z
”;WH%Q(D) = f (J ’;)Mfﬂ“e ~leitt d@)rdr
=27 ) |P1 e |2f MV < w £ 4 "

£#0

Therefore, combining the estimate from Step 1,
1
[l oy < Clllulrzmy + |ur] 2y + H;UeHLz(D)] < CHfHH%(Sl) :

Step 3. The case that k > 2. For general k > 2, we need to show that 0%u and
ikﬁgu € L*(D) for all j € {1,2,--- ,k}. To see this, first we note that by the Parseval

identity 1) and the fact that 7 _1k < k‘z L for all [¢] > &
Z 10/(10] = 1) - (|| = k + 1) forltI-Feite

et = [ ([
0|k

= J SR = 1)% - (6] — &+ 1) fol 29y
0

2d9> rdr

[¢|=k
<2r 3} 10l f -y

|€|>k
Z |2
\e|>k|€| ’”1

2k—1 712 ~ 2
(k+ 1)m mka el < (e Dl f 2y - (6.3)
>

Moreover, since

H%ﬁéu”izm) :f (J ‘Z (i0) fﬂ,lél —k it0

£#0

- 271-2 |g|29|f |2J p2M0=2k+1 g

£#£0

d@) rdr
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it suffices to consider the case j = k. Nevertheless,

1
| bullag = 25 3 10 1P [ r202ar

|0]>2 0

- 1

+ 20 P02 — 1) J -2k g,
00 0
1
<on 300 PR [ ol

£]>2 0

<2m 3106 - 170 - 2P | e

1
10]>3 0

1
< 27 Z |£|2(|g\ — 1)2 () =k + 1)2|f£|2j F2-2k+1 g,

|0|>k 0
+2r(1+2+ -+ k)\|f||2k7%(81)

which, with the help of (6.3)), implies that

1
w0l oy < 7k + DSy -

As a consequence, we conclude that [u]gxmp) < Oka”Hk—%(gl) for some constant

Ck>0. m]

The Holder spaces on D are defined as follows: if u : D — R is bounded and

continuous, we write

|ullg o) = sup |u(z)|.
zeD

For 0 < a < 1, the a'™-Hélder seminorm of u is

lu(z) —u(y)|
Ulpoap = sup —————
[ ]%O = x,yeDE:;éy |x - y|a

and the a®-Holder norm of u is

|ullgo.amy = [ulzm) + [Ulgo.em) -
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We will show that if f e H3?(S'), then for 0 < o < 1, f € €%*(S"). Next, we will use
the result of Theorem together with Morrey’s inequality and Theorem to
prove that u € €% (D). Let us explain this. We first prove the following:

f e H*2(S') implies that f e HY2t*(S") for a € (0,1)
which further implies that f e €%*(S'),

where the last assertion means that |f(z + y) — f(2)| < Cly|~.
We start with the identity
) = F@)] = | 2 e (@ = 1) = | 3 fuee (e — 1)
k0

keZ
< (Z |ﬁ|2<k>l+2a) % ( Z |€iky o 1|2<k>_1_2a>é
k#0 k#0

1
= Hf||H1/2+a(§1) < Z ‘eiky —_ 1|2<k>—1—2a) 2 '

k#0

1

We consider |y| < = and break the sum into two parts:

Z |€iky N 1|2<k,>—1—2a

k#0

_ Z |€iky i 1|2<k>7172a + Z ’ez’ky _ 1|2<k>7172a'

1 1
0<|k|< |k|>fr+1

N |

For the second sum, we use that [e*¥ — 1]? < 4 and employ the integral test to see
that

0
>y <2 J ri20 e < Oyl
[k|> 2 +1 Yyl
For the first sum, we note that |e*¥ — 1| < k?|y|? if |k||y| < 1. Once again, we employ

the integral test:

Z ’ez’ky . 1|2<k>7172a
0<[kl<
< |€iy i 1|2 + |6—iy i 1|2 + 2 |6iky . 1‘2<k>—1—2a
2< ki<

1

Tl —1—2« a
<2yl + 2f P22 dr < Co(y)® + [y]*)
1
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for some constant C' = C,. Since |y| < 1/2, we see that

5 1€ — 12717 < Calyl”
k#0

as a < 1.
Next, according to Theorem [6.8] if f € H??(S"), then u = PI(f) solves —Au = 0
in D with u = f on 0D, and ||ul|g2py < C| f|ys2(s1)- By Theorem W,

| Du oy < Cy/qllu|m2my Yaqe([l, o).
Hence, by Morrey’s inequality, we see that u € €%'~%%(D), and thus in €%*(D) for
ae (0,1).
6.3 Exercises

PROBLEM 6.1. Given f e L'(S!), 0 < r < 1, define

LN . ~ 1 (% .
PO = X Fartle Fo— 5o | so)e .

n=—0u
Show that )
1 ™
PAO) = e 50) = 5 | 0rl0 - ) (),

0

where
= - 1—17?
_ In| ind _
p-(0) n=2—oor c 1—2rcosf +1r?2’

2
Show that 5 f pr(0)d0 = 1.

™ Jo

PROBLEM 6.2. If f € LP(S'), 1 < p < o0, show that
P.f—f in LP(S') as r /1.
PROBLEM 6.3. Let D := B(0,1) < R? and let u satisfy the Neumann problem

Au=0 in D, (6.4a)
du

or

=g on 0D:=S'. (6.4Db)
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If u=PI(f) := 3 furl*ei*® show that for f e H32(S'),

keZ

g=AJ, (6.5)

which is the same as
gr = |kl fe -
A denotes the Dirichlet to Neumann map given by Af(0) = >, fklk\eike or Af =
keZ
—i;QHf = —ng‘g, where H is the Hilbert transform, defined by Hu(6) = Y (sgn k)gre*?.
keZ

PROBLEM 6.4. Define the function K(0) = Y. |k|7'e?*®. Show that K € L*(S') <
k#0

LY(SY). Next, show that if g € L2(S!) and | ¢(0)df = 0, a solution to (6.5)) is given

by f(0) = (2m)~" SIK(H —©)g(p)de.

PROBLEM 6.5. Consider the solution to the Neumann problem (6.4a}) and (6.4bj).
Show that g € H'/?(S') implies that v € H*(D) and that

luZr2 ) < C (1121 + Ul Z2my) -



Chapter 7

Regularity of the Laplacian on ()

We have studied the regularity properties of the Laplace operator on D = B(0,1) < R?
using the Poisson integral formula. These properties continue to hold on more general

open, bounded, €* subsets 2 of R".
We revisit the Dirichlet problem

Au =10 in ), (7.1a)
u=f on 0. (7.1b)

THEOREM 7.1. For k € N, given [ € H’“’%(aﬂ), there exists a unique solution
ue H*(Q) to (7.1) satisfying

Juls@) < Clfl ey gz C = C9).

Proof. Step 1. k = 1. We begin by converting to a problem with homogeneous
boundary conditions. Using the surjectivity of the trace operator provided by Theorem
4.15] there exists F' € H'(Q) such that 7F = f on 0Q, and |[F||g1 o) < C’||fHH%(m).
Let U = u — F; then U € H*(2) and by linearity of the trace operator, 7U = 0 on
0Q. Tt follows from Theorem 2.47 that U € H} () and satisfies —AU = AF in H}(Q);
that is

(=AU,vy = (AF,v) Vove Hy(Q).

According to Remark —A : H}(Q) - H7'(Q) is an isomorphism, so that
AF € H'(Q); therefore, by Theorem [2.63, there exists a unique weak solution
U e H}(Q), satisfying

J DU - Dvdx = (AF,v)  Vve Hy(Q),
Q

148
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with
WUl < ClAF|g-1(9), (7.2)

and hence
u=U+Fc¢c Hl(Q) and HUHHI(Q) < ”fHH%(aQ)'

Step 2. k = 2. Next, suppose that f € H'3(0Q). Again employing Theorem [4.15]
we obtain F' € H?*(Q) such that 7F = f and | F| g2 < C|f|n1500); thus, we see
that AF € L*(Q2) and that, in fact,

J DU-Dvd:vzf AF vdx Voe Hy(9). (7.3)
0 0

We first establish interior regularity. Choose any (nonempty) open sets 2 cc Qs c= (2
and let ( € €.°(Qy) with 0 < ( < 1and ¢ =1 on ;. Let ¢g = mindist(spt(¢), 0€2s)/2.
For all 0 < € < €, define U¢(z) = (n.* U)(z) for all z € Qy, and set

V= —Te* (C2U67j )7] .
Then v € H} () and can be used as a test function in (7.3)); thus,
—J Uy e (CUS; )i do = —f Ui me* [CPU 5 +2¢C, U5 ], da
0 Q
= J Ui Uy da — QJ Ne* [CCi U515 Ui da,
Qs Q
and

| APvds = | APg@Ue)y o= = [ AFne U200,V d
By Young’s inequality (Theorem ,

e (€205 +2CC,5 Uy M2 < ICPU%55 +2CC05 U [r2(0);
hence, by the Cauchy-Young inequality with §, Lemma for 6 > 0,

L AFvdz < 5||CD2U€H%2(92) + Od[HDUEH%?(QQ) + ”AFH%Q(Q)] :

Similarly,

QL N [CCi Ui 1y Uy da < 8|CD*U L2, + Csll DU L2, + [AF72(0)] -
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By choosing 6 < 1 and readjusting the constant Cs, we see that
||D2U€H%2(Ql) < ||CD2U€H%2(QQ) < Cé[HDUEH%Q(QQ) + \|AFH%2(Q)] < C5||AFH%2(Q) ;

the last inequality following from ([7.2)), and Young’s inequality.

Since the right-hand side does not depend on € > 0, there exists a subsequence
DU —W in L*).

By Theorem U¢— U in H'(Q), so that W = D?U on ;. As weak convergence
is lower semi-continuous, |D?U|2(0,) < Ce|AF||2(q). As Q1 and Q, are arbitrary, we
have established that U € HZ () and that

loc
HU”H@C(Q) < CIAF| 2 (q) -

For any w € H}(2), set v = Cw in (7.3). Since u € HZ (), we may integrate by parts
to find that

J(—AU—AF)dex:O Vwe Hy(Q).
0

Since w is arbitrary, and the spt(¢) can be chosen arbitrarily close to 02, it follows

that for all z in the interior of €2, we have that

—AU(x) = AF(z) for almost every = € Q. (7.4)

We proceed to establish the regularity of U all the way to the boundary 0€2. Let
{U}E | denote an open cover of © which intersects the boundary d€, and let {9},

denote a collection of charts such that

Yy : B(0, 1) — Uy is a €% diffeomorphism ,
det(D’l?g) = 1,
Ve(B(0,7¢) N {an = 0}) — Uy 1 09,
ﬁg(B(O,Tg) N {CL’H > O}) — Z/[g N Q.
Let 0 < ¢, < 1 in €°(U,) denote a partition of unity subordinate to the open covering

U,, and define the horizontal convolution operator, smoothing functions defined on R"

in the first 1,...,n — 1 directions, as follows:

pernF (zh, xy) = f pe(xn — yn)F (Yn, n)dyn

Rn—1
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where p(x5) = e @ Yp(a,/€), p the standard mollifier on R*~!, and z, = (21, ..., Tu_1).

Let a range from 1 to n — 1, and substitute the test function
v = —(pe*n[(Co 0 9e)*pe*n(U 0 Dp) 0] ) 09 ' € Hy(Q)

into ([7.3), and use the change of variables formula to obtain the identity

J Af(Uow),kA{(voz?g),j d:vzf (AF)odyvodyder,
B+ (0,r¢) By (0,rr)

(7.5)

where the ¢* matrix A(x) = [DY,(z)]™! and B, (0,r,) = B(0,7¢) n {z, > 0}. We

define

Ul=Uod, , and denote the horizontal convolution operator by H,. = p. *y, .

Then, with & = (, o ¥y, we can rewrite the test function as
Vo 195 = _He[é-[?HéUe?a ]7a
Since differentiation commutes with convolution, we have that
(U o 19()7]' = _He<£z2HeU£7ja )701 _2He(£fgfvj HeUeaoz )7@ )
and we can express the left-hand side of (7.5 as
f Af(UOW)»kAg(UOW)U de =1 + 1,
B4 (0,r¢)
where

I, = —f AfAfo,k He(ﬁ?HEUZ,ja Voo di
B1(0,7¢)
I2 - _QJ AgAngﬂc He(ff&f?j HeUé,a)wy dx .
B1(0,r¢)
Next, we see that
L= | [ )] (GHU ) do =T+ Ty,
B4 (0,7¢)

where

Ila

JB © )(AiAfH€U€7k )70{ gl?HGUe?ja dl’,
+U,Te

Ilb - J (HHeaAgAf]]UE?k)7a €§H€Uﬁ’ja dZB,
B+(0,T'Z)
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and where
[He, AJARUY . = H (AJARU* ) — AJAF H.U® (7.6)

denotes the commutator of the horizontal convolution operator and multiplication.
The integral Z;, produces the positive sign-definite term which will allow us to build

the global regularity of U, as well as an error term:
T, = f [GAIAYH U o HU' jo +(AIAD), HU )y HU" ;o | da;
B4 (0,r)
thus, together with the right hand-side of ((7.5]), we see that
f gtgAgAfHeUeaka HeUéaja dr < ‘ J (AzAf)aa HeUzak gl?HEUZ7ja]dx‘
B4 (0,7¢) B4 (0r¢)

+\Ilb]+\12]+lj AF)O??g'UOQ?ed:[;’,

B+ 07‘[

Since each 1, is a €*-diffeomorphism, it follows that the matrix A AT is positive
definite: there exists A > 0 such that

MY |2 < AJARYY, VY eR™.
It follows that

/\J 213DH.UY? dr < U (ATAR), H.U', g,?HEU",ja]dx‘
B4 (0,re) B (0,7¢)

FTul 41T+ | @R evvedds,

B+ O 7”[)

where D = (04,,...,04,) and @ = (04, ..., 04, ,). Application of the Cauchy-Young
inequality with 6 > 0 shows that

U (A1 A, HU', EH.U,] dx‘+\22|+‘ (AF) oﬁgvoﬁgdl“
B+ 0’/‘[

B4 (0r¢)

B4 (0,r¢)

It remains to establish such an upper bound for |Z;,|.
To do so, we first establish a pointwise bound for (7.6} . for A7F = AJAK,

[[HEJ AiAf]]UZ?k (.’L‘)

= J ( ) pe(xh - yh)[Ajk(yha xn) - Ajk(xhy xn)]Ueak (yh7 :En) dyh .
B(xp,e
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By Morrey’s inequality, |[A7 (yp, zn) — A (24, 24)]| < Ce| Alwro(s, (0., Since

1 ,;x—h—wyn
Oanpelin =) = 50 ().

we see that

10, (IHe, ALAFU 4 ) (2)] < © f

B(Zh,e €

1 ,/x—h—uyn
| gp’<—> Uk (yn, )| dyn
and hence by Young’s inquality,

0., (1He, AZARU ) < CU ey < CIAF| 2oy

H L2(B4(0,rg

It follows from the Cauchy-Young inequality with § > 0 that
Tul <6 |  @ODHU ds+ CilAF g,
B+ (O,T[)
By choosing 26 < A, we obtain the estimate
J &IODHU | dr < C5|AF |72 -
B+ (O,T[)
Since the right hand-side is independent of €, we find that
f E10DU d < C5|AF |20, . (7.7)
B+(07TZ)
From ([7.4), we know that AU (z) = AF(z) for almost every z € U,. By the chain
rule this means that almost everywhere in B, (0, 1),
— ijK’kj = .Ajk,j Ug,k +AF o1y,
or equivalently,
— AU = AU+ APRUY g + AR U +AF 00, (7.8)
Since A™ > 0, it follows from (|7.7)) that
f GID*UP dr < C5|AF |72 - (7.9)
B+(07TZ)

Summing over ¢ from 1 to K and combining with our interior estimates, we have
that
lullzie) < ClAF|r2q) -
Step 3. k > 3. At this stage, we have obtained a pointwise solution U € H*(Q) n
H}(Q) to Au = AF in Q, and AF € H*}(Q). Next, in each local chart, horizontally
differentiate this equation 7 times until 0" (AF o 4J,) € L?(€2), and then repeat Step 2

using ((7.8)). o



Chapter 8

Fourier Series and its Applications

8.1 The Hilbert Space L*(T)

A 27-periodic function on R can be identified with a function on the circle, or one-
dimensional torus T = R/(27Z) on which we identify points in R that differ by 27n
for some n € Z. We use €'(T) to denote the space of continuous functions on R with
period 2. The space L*(T) is defined as the completion of ¢ (T) with respect to the
L?-norm

loser = | [ Ifas]

and we note that the norm is induced by the inner product
(f,9)2m) = J f(x)g(x)dx.
T

Quantitatively speaking, the space L*(T) is the same as L?*([—m, 7]); however, when
speaking of L?(T), we are concerned with 27-periodic L*-functions, while the L*-norm
is computed only on the interval with length 27.

Since L?*(T) is a Hilbert space, it is nature to ask if there is an orthonormal basis
to L?(T). The goal of this section is to provide an orthonormal basis to L*(T).
DEFINITION 8.1. The Fourier basis elements are the functions

1
ep(r) = —e
k( ) V@;

We note that {e;};°__ is an orthonormal set in L?(T). In the following discussion,

ikx

we will show that {e;};° _ is maximal; that is, for each f € L*(T),

0

f= 3 (hedpme o f@) =5 3 | f@esay.
k=—o0

k=—00

154
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where the sum is understood as the L2-limit.

8.1.1 Trigonometric polynomials

DEFINITION 8.2. A trigonometric polynomial p(z) of degree n is a finite sum of the

form

p(a:)=@+Z(ckcoskx+sksinkx) reR.
2 3

The collection of all trigonometric polynomial of degree n is denoted by Z,(T),
and the collection of all trigonometric polynomials is denoted by Z(T); that is,

P(T) = n['_jo P, (T).

On account of the Euler identity e = cosf + isin 6, a trigonometric polynomial

of degree n can also be written as

n

p(z) = Z are™  with aj, =

k=—n

Clk| — S|k
2 Y
where sq is taken to be 0. Therefore, every trigonometric polynomial of degree n is
n

associated to a unique function of the form > aze*® and vice versa.
k=—n

DEFINITION 8.3. The Fourier series associated to a function f € L*(T) is the function

0

o0
Z f(k)eg(x) = %0 + Z ci cos kx + spsinkx,

k=—00 k=1

where {]?(k:)}k:_oo, {ci}ie, and {si};2, are called the Fourier coefficients of f given
by

]?(k) = \/%Lf(x)e_ik’”dx,ck = %Lf(m) cos kxdz | s, = %Lf(x) sin kzdz .

PROPOSITION 8.4. Let s,,(f, x) denote the partial sum of the Fourier series associated
to f e L*(T) given by

1 n ) n
sp(f,x) = - Z Lf(y)em(x_y)dy = %0 + Z crcoskx + sgsinkx
k=—n k=1

where ]?(k), ¢k and sy, are defined in Definition . Then

If = sn(fs )2y < |f = plzecr) Vpe PZ,(T).
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Proof. We note that if p e &2,(T), then s,(p, ) = p and

(f - Sn(fa .)’p)L2(T) =0.
Therefore, if p e 2, (T),
If = plizey = |f = salfs:) + sa(fs) = plTam)
= f = salf, Mz + lsalf = 2 )22

which concludes the proposition. O

8.1.2 Approximations of the identity

DEFINITION 8.5. A family of functions {cpn e ?(T ‘n € N} is an approximation of
the identity if

(1) @n(x) = 0;

(2) J on(x)dr =1 for every n € N;
T

(3) lim on(x) dz = 0 for every 6 > 0, here we identify T with the interval

=% Js<|o|<n
[—m, 7).

DEFINITION 8.6 (Convolutions on T). The convolution of two continuous function

f,g: T — C is the continuous function f x g : T — C defined by the integral

v) = f fx —y)g(y) dy

Note that all the conclusions from Section are still valid. In particular, we have

THEOREM 8.7. If {¢,}°_, is an approximation of the identity and f € € (T), then

wn * [ converges uniformly to f as n — .

Proof. Without loss of generality, we may assume that f = 0. By the definition of the

convolution,
(pu )@ ‘—J%f’?— 9 () dy — ()
- j onlm — 1) (f(2) — F(y))dy,
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where we use (2) of Definition to obtain the last equality. Now given ¢ > 0.
Since f € €(T), there exists § > 0 such that |f(z) — f(y)| < g whenever |z — y| < 4.

Therefore,
|(pn * f)() = f ()]
4 oulz — )| (@) <y>\dy+f enl = )| f(x) — )|y
lz—y|<6 s<|z—yl

3
S| ela-wdyromaxil [ aede.
T

<
2 0<|z|<m

By (3) of Definition , there exists N > 0 such that if n > IV,

£
n(2)de < ———.
L<z|<n¢ =) 4maxr | f|
Therefore, for n > N, |(pn * f)(z) — f(z)| <& for all z € T. o

THEOREM 8.8. The collection of all trigonometric polynomials P (T) is dense in

€ (T) with respect to the uniform norm.

Proof. Let ¢,(x) = ¢,(1 + cosx)™, where ¢, is chosen so that f ¢on(x)dr = 1. By the
T

residue theorem,

22+ 1\ndz 1 (z+1)*™ T (2n
1+ cosz)'de = ¢ (1+ = _ - dz = :
L( cosz)"dz il( 2 ) T T R 2n—1(n>
2n—1 (n!)Q

(2n)!"
Now {¢,}*_; is clearly non-negative and satisfies (2) of Definition [8.5| for all n € N.

thus ¢, =

Let 0 > 0 be given.

1+ cosdy\m (n!)?
() dr < 1 + cos§)dx < 2% )
L<|x<7r(p @) L<|z<7r i ) ( 2 > (2n)!

By Stirling’s formula lim =1,

n!
n—00 A/ 2mnnne "

2
1 o\ " 2rnn"e "
lim on(2) dz < lim 22”( o ) (v2r )
=% Jo<e|<n n—w 2 27(2n)(2n)%re—2n
1 )
= lim \/7m< - cos > =0.
n—00

So {©n}>_; is an approximation of the identity. By Theorem o * [ converges

uniformly to f if f € €(T), while ¢, » f is a trigonometric function. o
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COROLLARY 8.9. For any f € L*(T), lim [s,(f,-) — f|z2(r) = 0, and
n—00

0

1f ey = D) IFR)2 = x|

N9|oz\:>

0
2 i + st ] (Parseval’s identity) (8.1)

Proof. By Theorem , the collection of trigonometric polynomials is dense in €(T),

we know that the space spanned by {ex}_, is dense in € (T). The implication from

—o0
uniform convergence to L?(T)-convergence then guarantees that the space spanned by
{er}? . is dense in L*(T).

Let € > 0 be given. By the denseness of the trigonometric polynomials in L?(T),
there exists h € Z(T) such that | f — h||p2ry < e. Suppose that h € Zy(T). Then by
Proposition [8.4]

1= sn(fs ez < |f = b2y <e.

Since sy(f,-) € Z,(T) if n = N, we must have

If = sa(fs )2y < f = sn(f, )2y <€ Vn>=N.

Therefore, s,(f,-) — f in L*(T) as n — o0, and (8.1 is concluded by the fact that

Isn(f, ')”L?('Jl‘) - HfHLQ(’Jl‘) as n — 0. -

The proof of the following lemma is left as an exercise.

LEMMA 8.10. Let f,ge L*(T). Then

(f.9)r2m) = ), F(k)g (k).

k=—0o0

By Parseval’s identity (8.1)), for f e L*(T),

lim | (k)| =

|| =00

In fact, the Fourier coefficient of a function f € L*(T) also converges to 0 which is the

Riemann-Lebesgue Lemma.
LEMMA 8.11 (Riemann-Lebesgue). For f e LY(T), f(k;) — 0 as |k| — o0.

Proof. Let f e L'(T). Given e > 0, there exists f. € L*(T) such that | f — fo|,1m) < %

For this €, there exists N > 0 such that \ﬁ(k)\ < g whenever k > N. Therefore, for
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k= N,

Fo) < 1F ) - o]+ 12001 = | | [£) - £@)]ento) do] + |0

T
S| = Fellw + 1K) <€

which implies that lim f(k) = 0. o

|k —00

DEFINITION 8.12 (Weak convergence). Let H be a Hilbert space with inner product

(-, )n- A sequence u,, € H is said to converge weakly to u € H if

lim (un, g) = (w,9)n VgeH.

n

We use the notation u,, — u in H to denote the weak convergence of u,, to u in H.
With this definition, by the Riemann-Lebesgue Lemma we have the following

THEOREM 8.13. The Fourier basis e, converges weakly to 0 in L*(T).

8.1.3 Fourier representation of functions on [0, 7]

Any functions defined on [0, 7] can be viewed as the restriction of an even/odd function
defined on [—m, 7] to [0,7]. An even/odd function f in L?*([—m,7]) can be expressed

as ) . .
flz) = §O+;CkCOSk$/kZ::15kSink$-

For a function f € L%*(0,27) (here we identify T with [0,27]), g(z) = f(2z) is a

function in L?*(0, 7). Since

0
f(z) = % + Z(Ck cos kx + spsinkx),
k=1

we have

0¢]
g(x) = 2y Z(Ck cos 2kx + sy sin 2kx)
2 o

where
2
k= —f g(x) cos kzxdz S = —J g(x)sin kxdx .
T T

™ ™
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1 2 0 2 ©
As a consequence, {T, \/7 cos k:g:} {\/7 sin kx} are both maximal orthonormal

sets on L*(0, ). So i 1s \/>cos 2kx \/>s1n S o

1
We note that { 7 i\/> cos kx} is the collection of all non-trivial functions
™ m

with unit L?(0, 7)-norm satisfying

Upy = AU for some A € R,

uz(0) = uy(m) =0,

. 2 © . . . . .
while { + \/7 sin kx}k s the collection of all non-trivial functions with unit L?(0, 7)-
e =

norm satisfying

Ugy = AU for some A e R,

u(0) = u(m) =0.

8.2 Uniform Convergence of the Fourier Series

Given f € L*(T), by Corollary 8.9 we know that s,(f,-) — f in L*(T); thus possesses a
subsequence sy, (f,-) which converges to f almost everywhere. In this section, instead
of assuming that f € L*(T), we consider f € €%%(T), and investigate the convergence
behavior of the Fourier series of f.

Before proceeding, we define

1 n ' 1 e—inx [6i(2n+1)r _ 1]
Dn r) = — ezkw _ :
(%) 7 k;n T e —1
1 eilnt+1/2)z _ o—i(n+1/2)z sin(n + %)x
T or eir/2 — g—iz/2 o7 sin §

Then

5n<f,x)_\/% Z zkx: Z zﬂf 1kx y y

k=—n k=—n

_ f F(Y)Dul — y) dy = (D * f)(x),

and Corollary [8.9| states that D, » f — f in L*(T) for all f e L*(T).
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DEFINITION 8.14. The function
(8.2)

is called the Dirichlet kernel.

8.2.1 Uniform convergence

In the following, we first consider an easier case f € €%!(T); that is, f is Lipschitz
continuous on T. We note that if f € €%!(T), then f is absolutely continuous,

differentiable a.e., and satisfies the integration by parts formula

[ @y = s

The identity above allows us to prove the uniform convergence much more easily. We

ff z)dr Yge €Y T).

have the following

THEOREM 8.15. For any f € €%(T), s,(f,:) = D, * f converges to f uniformly as

n — oo.

Proof. Since f Dy(x —y)dy =1forall z €T,
T

su(fo2) = F(2) = (Do s f — f)a jD =) (f(y) — F(x))dy
JD flz+y)— f(z))dy.

We break the integral into two parts: one is the integral over |y| < ¢ and the other is

the integral over § < |y| < 7. Since f € €%'(T),

[y + ) = f@)] < [ L=yl

thus

9
Dn(y)(f(ery) dy‘ J ‘f r+y) - f(z )|dy

’ ly|<s ’smg‘

)

)

< | e f Yoay<0s. (83)
-9 Sll’l§
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As for the integral over 0 < |y| < 7, we have

T 1, fla+y)—flx) ,  cos(n+3)yflz+y) — fla)]="
L Sl (n+§)y sin ¥ dy = n+i sin ¥ y=5

+J“wdn+bydf@+wf(w
é

n+3 dy sin 4

Y.

Note that the first term on the right-hand side converges to 0 uniformly as n — co.

For the second term,

\JC% 3y d fa+y) - “Mﬂ
n+2

dy sin &
_ Tcos (n+3)y f( x—i—y Tcos (n+ 5)ycos 4 (flz+y) — (x))d
N n T sin § sin2 ¥ Y
2
— 9 (W—5) 2(m —0)
<[f'lzee Wiﬂ\f\\m nr— 135 < Iflern =57
D+ Dsing D+ 4)sin? S '(n+5)sin”3

Therefore, combining the estimate above with (8.3)), we find that

lim sup sup ‘ J sin Ly ty) - 7 f(x)dy‘ < (9,
n—o0 zeT sin
and the conclusion follows from that ¢ > 0 is chosen arbitrarily. O

The uniform convergence of s,(f,-) to f for f € €%*(T) with a € (0,1) requires

a lot more work. The idea is to estimate H f—suf in terms of the quantity

7'>HL%(T)

inf ||f —p|roer). Since s,(f,-) € Z,(T), it is obvious that
pePn(T)

Eglf Hf pHLOO(T Hf - Sn(fa )HL&’)(T) :

The goal is to show the inverse inequality
Hf - Sn(f? )HLOO(’]I‘) < CTL lnf ||f pHLOO (84)

for some constant C,,, and pick a suitable p € &,,(T) which gives a good upper bound
for H f=sn(f

H Lo (T)” The inverse inequality is established via the following

PROPOSITION 8.16. The Dirichlet kernel D,, satisfies that for all n € N,

J |Dy(2)|dx < 2+ logn. (8.5)
T
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Proof. The validity of (8.5)) for the case n = 1 is left to the reader, and we provide

n ikx 3 1
the proof for the case n > 2 here. Recall that D,(z) = ] c_ = Sm(nﬂ_ i)x
ey 2T 27 sin 5
Therefore,
m n ™ sin(n + 1)z
|Dy(2)|de =2 | |Dy(z)|de = | 2|Dy()|dz + _—z’dx.
The first integral can be estimated by
1
n 12 1
f 2| D, (a)|dw < == (8.6)
0 T n
Since Z <sinz for 0 <z < g, the second integral can be estimated by
s
™ sin(n + 1) ™1
f (,—gf)‘dxéf —dzr =logm +logn. (8.7)
1l wsing 1

We then conclude 1) from and 1) by noting that log 7 + 2nt 1 < 2 for all
nm

n = 2. !
REMARK 8.17. A more subtle estimate can be done to show that

f 1Dy (2)|dz = ¢ + calogn VneN
T

for some positive constants ¢; and cs.

With the help of Proposition we are able to prove the inverse inequality (8.4)).

The following theorem is a direct consequence of Proposition [8.16|

THEOREM 8.18. Let f € €(T); that is, f is a continuous function with period 2.
Then

I = 507N ey < (B+logm)_inf 1f = pluece). (8.5)

peE

Proof. Forne N and x € T,
sn(fi)| < [ DA = )y < (2 + og )] e
T
Given € > 0, let p € Z,(T) such that

— plyom < inf — ooy + €.
If — pllrem pe;,{il(T)\\f plroer +e
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Then by the fact that s, (p,z) = p(z) if pe £,(T), we obtain that

Hf B Sn<f’ ')HLOO('[[‘) < Hf _pHLOO('[[‘) + Hp - Sn(f? )HLOC(’]I‘)
|/ _pHLOO(T) + [sa(f = p, ')HLOO(T)
Hf _pHLOO(’]I‘) + (2 +1logn)|f = plre()

<3+ logn)[peglfm If = plmcy + ]

N

N

and (8.8) is obtained by passing to the limit as € — 0. ]

Having established Theorem the study of the uniform convergence of s,(f,-)
to f then amounts to the study of the quantity glfm |f = pllee(ry. In Exercise
pEPn

Problem [8.2] the reader is asked to show that

1+ 2logn
inf — o < ——— ) ;
ok If = pllzecr) o 1f [0 (r)

thus by Theorem sn(f, ) converges to f uniformly as n — oo if f € €%Y(T), a
restatement of Theorem [R.151
The estimate of inf |f — p|p(r) for f e €%(T) is more difficult, and requires

peZn(T)
a clever choice of p. We begin with the following

LEMMA 8.19. If f is a continuous function on [a,b], then for all 6; > 0,

sup [F(@)— )] < (14 %) sup |@) — S,

lz—y|<d1 02 |z—y|<d2

The proof of Lemma [8.19]is not very difficult, and is left to the readers.

Now we are in the position of prove the theorem due to D Jackson.

THEOREM 8.20 (Jackson). Let f be a 2m-periodic continuous function. Then for
some constant C' > 0,
inf |f =pleem <C sup [f(x) = fy)]-
peZn(T) ja—yl<2

Proof. Let p(x) =1+ c¢ycosz + -+ + ¢, cosnz be a positive trigonometric function of

degree n with coefficients {c¢;}"_; determined later. Define an operator K on ¢'(T) by

1
o7

Kf(x) Lp@ﬁ@—ywy
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Then Kf € #,(T). Lemma then implies

\Kf(x)—f<x>\<21 | st = = sty
<o | s al) s £~ f)ldy

lz—y|<+
n
= [1 + o !ylp(y) dy] sup |f(2) — f(y)].
T Jen lo—yl<
2
By Hélder’s inequality and that y? < 7(1 —cosy) forye T,

Therefore,

IKF = floor < (1+5v2=ar) sup [f(2) = f).

lz—y|<z

To conclude the theorem, we need to show that the number n+/2 — ¢; can be made
bounded by choosing p properly. Nevertheless, let

p(z) = c‘ Z sin uezkx — CZ Z sin (k+ 1) (€ + )We’(k_é)x
=0 —

n+2 n+2 n+2

B S o (k+ D)7 S B+ D)r(+ D B
—chm ryTE +QCZSIH T2 2 cos(k — 0)x

and choose ¢ so that p(z) =1+ ¢;cosz + - - + ¢, cosnz. Then

N (k+1)m 1 ¢ 2(k + 1)m
1 _
c = E sin? —§k_20[1—cos ]

n+2 n+2
*n~|—1 Sin%—sinﬁﬁinJrQ
) 4 sin T~ 9

n+2
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and
= E+1 k = 2k +1
01=2chm( )Wsn T ICZ[CS T__ ( )W]
n+2 n+2 n n+2
k=1 k=1
- (2n+2)w . T
sin sin =1
_ c[n oS L n+2 ﬂ n+2
n+2 2smn—+2
sin 2%
= c[ncos T - "+2]
n+2 sin nL+2
= + 2 - 2 .
c(n + 2) cos co8 ———
Therefore,
1
nv2—c = n<2—2c:osnj_2>2 = 2nsinﬁ
T T
=2(n+2)sin ————— —4sin ———
(n+ 2)sin 5oy —4sin 5075
2(n+2) . @ : @
=T sin —4sin ———
7r 2(n+2) 2(n+2)
which is bounded by 7 + 4. O

Finally, since lim n™*logn = 0 for all a € (0, 1], we conclude the following
n—0o0

THEOREM 8.21. For all f € €%*(T) with a € (0,1], s,(f,-) = D, * f converges to

f uniformly as n — co.

REMARK 8.22. The converse of Theorem [8.20/is the Bernstein theorem which states
that if f is a 27-periodic function such that for some constant C' (independent of n)
and a € (0,1),

inf — om < Cn™¢ 8.9
e If = plLe(m n (8.9)

for all n € N, then f € €%%(T). In other words, (8.9) is an equivalent condition to the
Holder continuity with exponent « of 27-periodic continuous functions. One way of

proving the Bernstein theorem can be found in Exercise Problem [8.4]

8.2.2 Jump discontinuity and Gibbs phenomenon

In this section, we study the convergence of the Fourier series of functions with jump

discontinuities. We show that the Fourier series evaluated at the jump discontinuity
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converges to the average of the limits from the left and the right. Moreover, the
convergence of the Fourier series is never uniform in the domain excluding these jump
discontinuities due to the famous Gibbs phenomenon: near the jump discontinuity the
maximum difference between the limit of the Fourier series and the function itself is

at least 8% of the jump. To be more precise, we have the following

THEOREM 8.23. Let f : R — R be a piecewise continuously differentiable function

which is periodic with some period L > 0. Suppose that at some point xy the limit from
the left f(xg) and the limit from the right f(xg) of the function f exist and differ by
a mon-zero gap a:

flag) = flag) =a #0,
then there exists a generic constant ¢ > 0, independent of f, xo and L (in fact,
c=1 JW ST % ~ 0.089490), such that

™ Jo xr
lim s,(f,z +£) = f(xf) + ca (8.10a)
e n » L0 m 0 ) .
L
lim s, (f,zo — %) = f(zy) —ca. (8.10Db)
Moreover,
fzg) + fl=g)

lim s,(f,z0) = 5 (8.11)

Proof. Without loss of generality, we may assume that o = 0 is the only discontinuity

(07) + £(07)
2

of f, f(0) = / ,and L = 27. Let g be a discontinuous function defined by

i(L7c+7r) if —mr<x<0,
2m

g(z) = 0 ifz =0,
%(l’—ﬂ') fo<z<m.

Then F = f + g is Lipchitz continuous on T, thus by Theorem [8.15]

SO = FO7) _ p0) = tim s,(F,0) = Tim s,(f,0) + lim s,,(g,0)

2 n—aoo n—ao0

= lim s,(f,0).
n—0o0

This proves (8.11)).
T ia

By g(k) = \/%J_ g(z) e *ody = WorD? if & # 0, and g(0) = 0, we find that
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sn(g,z) = > 9(k) ekt — — 3 L sin(ka); thus
=— p=1 7k

k=—n \/%
sulo: ) = —jismk_” - _ﬁz_smk_”h_zf LN
" mk T ) = '
Therefore, by the continuity of F,
fO9)+f07) T T ™
y ~ Jm FC) = Jim s (f,0) + i su(g, 0)
= lim sn(f, z) — EJ Smxda:,
n—0o0 n ™ Jo x
+ —
and (8.10a) follows from f(());rf(()) + % = f(0%). (8.10p) can be proved in the
same fashion, and is left as an exercise. O

8.3 The Sobolev Space H*(T)

DEFINITION 8.24. For s > 0 (not necessary an integer), the Sobolev space H*(T)
consists of all functions f € L*(T) such that

0

> KPR

k=—0o0
If f,ge H*(T), then the H*(T)-inner product of f and ¢ is defined by

0

(f.g)mm = Y, (1+ [k f(k)5(k)

n=—auo

which induces the H*(T)-norm as

0e]

Ho(T) = Z (1+ &) f (k)

k=—0o0

| f]

ExXAMPLE 8.25. Consider the heavyside function H defined by

1 if 0<zx<m,
H(z) =

0 f —m<x<0.
The Fourier coefficients for H is

g if k=0,
~ 1 (" . -
H(E) = PR 0 if k is even, k # 0,
(k) %L .
\/;ik if & is odd,
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hence H € H*(T) if s < %
PROPOSITION 8.26. If0 < s <, then H"(T) < H*(T).

PROPOSITION 8.27. If k € N, then €*(T) < H*(T), where €*(T) consists of all

k-times continuously differentiable (2m-periodic) functions.

THEOREM 8.28. Let 0 <r <t < o, and s = ar + (1 — a)t for some a € (0,1).
Then

el rscry < el ey el ey - (8.12)

Proof. By definition,

s T1s

(1 + [k[*)*[a(k) |

|ul ?{s(qr)

(1 + [K[*)r [ak) 2 (1 + [k k) 2

k=—00

—_

Noting that

— + ————=7 = 1, by the Holder inequality we find that
! (1—-a)

0

D) (1 + a0 (1 ) ) PO

k=—00
0 0

[ 3 v wpramp]’| 3 o+ wpame]

k=—00 k=—00

which leads to (8.12)). o

N

THEOREM 8.29 (Sobolev embedding, the simplest version). If f € H*(T) for some
> — then there exists ]?E € (T) so that f = ]? almost everywhere. Moreover, there

exists a constant Cy > 0 such that

1l (ry < Csl ]

Proof. Let s,(f,z) be the partial sum of the Fourier series of f defined as before.

wery Y fe HY(T). (8.13)

Then for n > m,

1 ~
|sn(f, ) = sm(f,2)| = fk)e'*s |f (k)]
\/ﬂ ’ m<§k]<n \/ﬂ m<§l€:<n
1 5112 1 1/2
<\/_27[ Z CEURAVCT DY (1+]k\2)3] |

<|k|< m<|k|<n
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Therefore, Hsn(f,-) — Sm(f, ')HLw(T) — 0 as n,m — oo, which implies that s,(f,")

converges uniformly; hence f = lim s,(f,-) is continuous.
n—0o0

0

. 1 1 3
Th tant C; 8.13 be ch — —| .
€ constan m can be cnosen as m[k_zzoo (1 n |k;|2)5:| o

8.3.1 Characterization of H!(T)

Definition [8.24] gives a quantitative way of describing functions in H*(T). In this
section, a qualitative point of view of H'(T) is provided based on the Hahn-Banach
theorem from functional analysis. Roughly speaking, a function f € H'(T) has weak
derivatives belonging to L*(T) and satisfies the integration by parts formula. We start

from stating the following

THEOREM 8.30 (Hahn-Banach). If Y is a linear subspace of a normed linear space
X and T :Y — R is a bounded linear functional on'Y with |T| = M, then there is a
bounded linear functional T:X —> R on X such that T restricted to'Y is equal to T
and |T| = M.

In other words, a bounded linear functional on a normed linear space can be
extended to a bounded linear functional on a larger space without changing the size
of its norm.

Let f e HY(T) and ¢ € €*(T). We define a (bounded) linear functional T} on
%1 (T) by

Ty(o) = f f(2)e (@) da

The goal is to extend T to a bounded linear functional T ' defined on L*(T). Since
the application of the Hahn-Banach theorem requires that the range of the linear
function to be real, in the following discussion we will always assume that f and ¢
are real-valued functions.

Since ¢’ € €(T) = L*(T), we can compute ¢’ and obtain that ¢’(k) = ikB(k).
Therefore,

L F@)e' @) de = (F, N mm = S TR

k=—00

hence by Holder’s inequality,

| ree@an < 3 HIFOIGE] < 1flm el
k=—o0
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The computation above shows that if f € H*(T), T} is a bounded linear functional
(on a subspace of L*(T)). By the Hahn-Banach theorem, T} can be extended to a
bounded linear functional T . L*(T) — R. By the Riesz representation theorem, there
is a function g € L*(T) such that

~

Fo(0) = (0.9) 12wy = f p@)g(x)dz Ve LA(T).

In particular, for ¢ € €*(T),

~

L o (@)g(x) d = Ty() = Ty(p) = j F(2)o(2) de.

The function h = —g is called the weak derivative of f, and usually is denoted by f’
as well. The reason for calling h the weak derivative of f is that if f € €*(T), then

- | F@ew e = | fae@ . (8.14)

so h is indeed the derivative of f. Note that g € L?(T) is “the same as” saying that
f' e L*(T). In fact, we have the following

THEOREM 8.31. A function f belongs to H'(T) if and only if f € L*(T) and there
exists a function g € L*(T), called the weak derivative of f, such that

- Lg(l’)w(fﬁ)dﬂf = Lf(fﬂ)@f)'(w)dw Ve (T). (8.15)

In other words, the space H'(T) consists of all functions in L*(T) possessing weak

deriatives in L*(T).

Proof. Tt remains to show that f € H'(T) is a necessary condition. Suppose that
f € L*(T) and there exists g € L*(T) satisfying (8.15)). Then

> 0 = (0. 0hoee) = | o)e@ide = [ @i da

~

This implies that g(k) = —ik f(k); thus
a0

o RPIFRP = Y Gk = lglfe < - e

k=—00 k=—0o0
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COROLLARY 8.32. Let f € HY(T). Then |f|}q) = | fl72e) + | |72(r), where f'is

the weak derivative of f.

REMARK 8.33. The proof of Theorem [8.31] also implies that the Fourler coefficients
]? (k) of the weak derivative f’is ikf ( ) since f’ = —g. Therefore, 1f denotes the

weak differentiation operator

o 8 ] g £ - 7 8 i)

k,

thus . commutes with the infinite sum (in which the convergence of the infinite sum

is understood in the L?-sense).

REMARK 8.34. Let f € H'(T), then for any given ¢ > 0, there is a function
fo € €*(T) such that

|f = fellarmy < €;

that is, H'(T) is the completion of the normed space (€*(T),| - ||z (1))

REMARK 8.35. The Hahn-Banach theorem does not guarantee the uniqueness of
the extension Tf. Therefore, there might be two extensions Tfl and sz, mapping from
L*(T) to R that equal Ty on €*(T). Suppose that g; and g, are the corresponding
representations of YN”fl and ZN}Q. By definition,

L o(@)ga(x) dz = T, (0) = Ty(p) = Trolp) = f (@) ga(x) da

for all ¢ € €*(T). Therefore, g; = g, a.e. in L2(T); thus the extension T is indeed
unique. The key here is that €*(T) is dense in L*(T).

Similarly, we have the following

j
THEOREM 8.36. A function f € H*(T) if and only if for each 0 < j < k, fU) Z J;

is weakly differentiable with weak derivative fUY belonging to L?(T). Moreover, there

are positive constants Cy and Cy such that

N

Cull fllzrery < D19 22y < Coll ey
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8.3.2 The space H*(0, )

Motivated by Theorem and Corollary we look for a qualitative description

of the H"*-space using the language of weak derivatives.

DEFINITION 8.37. A function v € L}

loc

(0,7) is said to be weakly differentiable if

there exists a function g € L (0, 7) such that

- [ s@p@de = | fp@de veegm). (19
0 0
The function g is called the weak derivative of f, and is denoted by f’.

We note that in the definition above, the functional framework L{ .(0,7) is chosen

loc

so that the integrals in (8.16)) make sense. Moreover, the test function ¢ in (8.16)) is
compactly supported in (0, 7); that is, spt(¢) < (0, 7).

DEFINITION 8.38. The space H*(0,7) consists of all functions f € L?(T) possessing

square integrable weak derivatives fU) = f for all 0 < 5 < k; that is,

40, 1) = {f e LQ(O,W)’ f|f<j>(x)\2dx <o Vj=0,1,- k;}
0

The space H*(0,7) is equipped with a norm given by

IFl07) = [2 1 oo

which is induced by the inner product

k
(f, 9 arom = Z ) Y f,ge H*0,7).
. . . 1 2 o
REMARK 8.39. As mentioned in Section , {\/7, \/7 cos ka:}k ,Isan orthonor-
m i =
. 1 2 coskx .
mal basis of L*(0,7). Let wy = — and wy, = TR Then {w};”, is an

orthonormal basis of H'(0, ) (see Exercise Problem [8.5). Expand sinz in terms of
this H'-basis, we obtain that

sing=—— ) ————cos2kr = — — lim ) ————— cos2kx
T w4k -1) T n—o (42 — 1) ’
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where the limit is taken in the H!-topology, or equivalently,

=0.
H(0,7)

. . 2 4
r}grolo H sinx — = + ;mCOSQkH}’

o 0 .
Note that wy has the property that the derivative of wy, %, vanishes at the boundary

points x = 0 and x = 7 for all k, but the derivative of sinx at the boundary points

does not vanish.

8.4 1-Dimensional Heat Equations with Periodic Bound-
ary Condition

In this section, we consider the heat equation:

ur(z,t) — Uge(x,t) = f(2,1) for all (z,t) € (0,27) x (0,7, (8.17a)
w(0,t) = u(2m,t) forallte (0,T), (8.17Db)
u(z,0) = g(z) for all = € (0, 27). (8.17¢)

Condition (8.17p) is called the periodic boundary condition, which enables us to treat
solutions u(-,t) as a periodic function defined on R for all ¢ € [0,7]. We assume that

2 .
g€ HA(T), maox |F(.0)] 2oy < o0, and

T T
[ 100t = [ [ (60 +1ute, 0 )dode < .
0 0 JT

8.4.1 Formal approaches

Assume that for all ¢ € [0,T], u(-,t) € L*(T). Therefore, if d,(t) is the Fourier
coefficient of u(-,t), we can express u(x,t) as

0 0

1 .
u(x,t) = —= de(D)e™ = Y di(t) en(z).
wﬁi;k=—@> k=—o0
Because of (8.17c), we must have di(0) = g(k). Moreover, for almost all ¢ € [0,T],
f(-,t) € L*(T). Therefore,

e¢]
2 fk(t)e“m for almost all t € (0,7,

k=—o0

fﬂ%t):

¢l-

2
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where fi(t) is the Fourier coefficients defined by

—ikx
fk mffxt dzx .

Suppose that we can switch the order of the differentiation and the summation, then

Z dk zkx’ Um(ib" t 2 k2 zkx,

kfoo

thus by (8.17h), for almost all t € [0, T,

®
\/LZ? k;@ [a1(6) + Kdu(t) — Ful) e = 0. (8.18)
Since {ex}{__., is maximal, we find that di(t) solves the ODE
() + K2y (t) = ful(t). (8.19)
Together with the initial condition di(0) = g(k), we find that
d(t) = e F1G(k f Fr(s)e F =) gs

which implies that a solution u(z,t) can be written as

u(x,t) _ \/LQTT Z —thA J fk —k (t—s) ] ikw (8.20)
k=—00

ﬁ\

8.4.2 Rigorous approaches

Before proceeding, we state a very important theorem in the study of differential

equations.

THEOREM 8.40 (The Gronwall inequality). Let x(t) be a non-negative, continuous
function on the interval [0, T]. If x(t) satisfies x'(t) < M + Cx(t) for all t € [0,T7],
then

() < '3 (0) + %(em ~1) vielo,T]. (8.21)

Proof. Multiplying both sides of the differential inequality by the integrating factor
e ¢t we find that

%[emx(t)] < Me™“t.

The desiblack inequality is then obtained by integrating the inequality above in time
from 0 to t for some ¢ € [0, T], and the detail is left to the readers. o
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COROLLARY 8.41. Let y(t) be a non-negative, integrable function on the interval

[0,T]. If y(t) satisfies

t
y(t) < M + CJ y(s)ds Vtel0,T], (8.22)
0
then
y(t) < Me“t  Vtel0,T].
t
Proof. Let x(t) = J y(s) ds and apply Theorem [8.40). o
0
1 < 1
Let f,(z,t) — ez and g, = — ””". We look for a
f \ﬁk_Z (t 9n(@) = = ;
solution u,(z,t) to
Unt (T, 1) — Upga (2, 1) = fr(x,t) for all (x,t) € (0,27) x (0,7, (8.23a)
un(0,t) = u,(2m,t) for all t € (0,7), (8.23b)
un(x,0) = gn(2) for all z € (0, 27). (8.23¢)

The same procedure as the formal approach implies that

W, t —k2t’\ J —k (t—s) ] ikx
is a solution to (8.23)). Our goal is to show that w,, converges to the solution of (8.17).

Energy estimates

In order to show that w,, converges (in certain sense), we need to show that it is a
Cauchy sequence. Define v™™ = u, — Uy, ¢"™ = gn — gm and ™" = f, — f,,. Then

™™ satisfies

v (@, t) — o (x,t) = fU" (e, t)  for all (x,t) € (0,27) x (0,7), (8.24a)
v™"™(0,t) = ™™ (2m,t) forall te (0,7, (8.24b)
™™ (2, 0) = g™ (x) for all = € (0, 27). (8.24c)

Multiplying (8.24h) by v%™ (z,t) and integrating over T,

L[vtn’m(af,t) (1) o (o, 1) de = f Fom (e, o (ot de. (8.25)

T
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Integrating by parts in z, we find that

| vt de = [ e d

T

10 Ld o
- | ErE 0P = SEIEC O

and
—jv%%%wwmmuxwmzjkﬁmut>gmxwdx—wmx,Mmmy
T

Moreover, by Holder’s and Young’s inequality,

anmms Urzax ,s)dx:—ff;’m(:c,s xa::c(x S)d$
T

177

n,m 1 n,m
< I Cs) el ¢ 8) Lo 5’[Wf (s )| Zaemy + vz )”%P(T)]'

As a consequence, (8.25]) implies that

d n n,m
— oz C O + vz (O 12 my < 12 C 01 e
dt

and integrating in ¢ over the time interval (0,¢) further implies that
Ol + [ Il

<w%ﬂam+LWﬁmuﬂiwm&

(8.26)

Similarly, multiplying (8.24fa) by v™™ or v2™ and then integrating over T, we obtain

that

o Ol + [ Il

<myﬂam+ﬁwﬂmm@%wma

and
t
n.m n.m n,mil2
W’(ﬁ)§m+2L”%’@ﬂﬁmw<M’|mm

t t
+Lvmm$@mmemeu®@mw.

(8.27)

(8.28)
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Summing (8:26), (8:27) and (8:28),
t
v“%wzmﬁw[wm;m+ﬁwwm@@wmﬂ

t
+fwww@@mms
0

thus the Gronwall inequality suggests that

T
s [ Ol r) < 2[16" ey + | 1 ds|eT 829
0

te[0,T

T
Since g € H*(T) and f 1£ (O3 ey dt < oo,
0

Jim g i =0 and - tim | 8) B yds = 0.

As a consequence, u,, converges uniformly in H?(T); that is, there exists u € €([0, T']; H*(T))
such that

I (o t) —u(-t —0.
phim | max Jun (- ) = ul-, 1) mr2em)

We note that the equality above also suggests that g, = u,(-,0) — u(-,0) in H*(T);

thus u(x,0) = g(x). Moreover, because of the assumption that nﬁ]a%(]ﬂf(-, 2 < o,
te[0,

fn— f€€([0,T]; H*(T)) as well. Therefore,

o, e 0 G Ol = lim, o 1777 8) = " Ol aogey = 0

which implies that u,, converges uniformly in L*(T). Assume that u,, — w in

€([0,T]; L*(T)), we must have u; = w due to the uniform convergence. Moreover,

similar to (8.29) we obtain that u € €([0,T]; H*(T)) satisfies

mmmoﬁmﬁ«ﬂﬂ;m+fuﬂwm | (8.30)
te[0,T

So we conclude the following

THEOREM 8.42. Suppose that f € L*(0,T; H'(T))n% ([0, T]; L*(T)), and g € H*(T).
Then

u(x,t) = \/%? kgoo [e_k 9 J Fu(s)e ¥ s ds] (8.31)

solves (8.17)) (in the sense of weak spatial derivatives). Moreover, u belongs to the

space € ([0, T]; H*(T)) and satisfies (8.30)).
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2
REMARK 8.43. Let f(z,t) = (2—36 — %) + 2—2
7T

T T
2
% ([0,T]; L*(T)), and the function u(z,t) = (2—36 — %

™

Then f € L*(0,T;HY(T)) n
)t satisfies

z,t) = f(z,1) for all (z,t) € (0,27) x (0,0),

0,t) = u(2m,t) forall t > 0,

u(z,0) =0 for all = € (0, 27)

(2, 1) — Ugy

in the poinwise sense; however, u(-,t) ¢ H*(T) for all ¢ > 0. In fact, extending u

periodically with period 27, we have u(0",¢) = w(07,¢) = 0, and

2
u(07,8) = =t = —u, (07, 1)
T

which suggests that the “temperature” (the physical quantity that u presents) near by
the origin increases in ¢ while the “temperature” at the origin is always zero. Since we
expect that the heat will low into the origin so that the temperature at the origin

also increases, this particular u is not a reasonable solution.

The solution given by (8.31]) is

Lrdn, 2,5 4@ =1) 4
u(i,t)—%[(igt—Fﬂt)-i—;];OTe ]

8.4.3 The special case f =0

There are some good properties for the solution u to the heat equation (with periodic
boundary condition) when there is no external forcing. We study these properties in

this sub-section.

Maximum principle

Multiplying the heat equation u; — uz, = 0 by pu|u[P~? and then integrating over T,
we find that

d _
IOy 9o = 1) | a0ty do =0,
Integrating in time over the time interval (0,¢) then implies that

Hu(a t)HLp('[r) < ”gHL”(T) :
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Passing to the limit as p — o0, we find that

Hu('7t>HLoc(T) < Hg”L"’('H‘) Vi>0. (832)

This inequality reads that the magnitude of the solution never exceeds the magnitude
of the initial state, and is called the maximum principle for the heat equation (with

periodic boundary condition).

8.4.4 Decay estimates

Under the assumption f = 0; that is, we are in the situation that there is no heat
source in the environment, we expect that the solution/temperature will converges
to the average g = J[ x)dr = J x)dzr as t — 0. We would like to study the

convergence rate of u — g.
By (8.31) with f = 0 and the Parseval identity,
_op2 _ _
[u(-t) = gl7am = X5 e 1g(k) 3l e | gl7ar)
k0 k#0

which implies that

Hu(',t) gHLQ(T) < 6_tHg”L2(T) Vi>0.

Usually we are more interested in the case of t » 1. In such a case, we may evaluate
u— g in L*(T) and obtain that

_ 2 1.2 _ 1.2
HU<',t) - gHLOO(T) Z e * t‘g _HgHLl Z € KA 1 k
k;éO n#0
(t=>1 3
2V Lo Nglprm D e™ < Ce gl
k0
where we use the fact that Skug (k)| < f” gllzr(ry to conclude the inequality.
€
Moreover, suppose that g is smooth so that w is smooth then
('/wu 1.2 ik
o) = e R e

k#0

thus for all £ € N, similar argument implies that

<e Vgl Y. e Mk < Crelglpa Vi1

H oxt" HLOO(T) =

This proves the following
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THEOREM 8.44. Let u be the solution to the heat equation (8.17) with f =0 and g €
LY(T). Then the (-th partial derivatives of u — g with respect to x decays exponentially

to zero in the uniform sense.

8.5 1-Dimensional Heat Equation with Dirichlet Bound-
ary Condition

In this section, we consider the following initial-boundary value problem for the heat

equation
up(z,t) — uge(x, t) = f(2,1) for all (x,t) € (0,L) x (0,7, (8.33a)
u(0,t) = u(L,t) =0 for all t € (0,7, (8.33b)
u(z,0) = g(z) for all x € [0, L]. (8.33¢)
i : 2 . kmxyo
Because of the boundary condition (8.33b), we use the orthonormal basis {\/; sin —— }k—l'

Assume that u(z,t) = Z di(t )sm— Then

w2 k2

, 2 kma

with initial condition

di(0) = EJ g(x)sin k%xdx

0

Therefore, by solving the ODE for dj (), we expect that the solution u to (8.33)) can
be expressed by

O 21,2 t 21,2 k
= Z [dk(O)e_Tgt + f fr(s)e” s (t_s)ds] sin %x : (8.34)
k=1 0

Following the procedure in the previous section, let u,, f, and g, be the partial

suImns
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and define v = u,, — u,, and ¢"™ = ¢, — gm, "™ = fn — fm. Then v™™ satisfies

v () — o (x,t) = fU" (e, t)  for all (x,t) € (0,L) x (0,7), (8.35a)
v™™(0,t) = v™"(L,t) =0 for all t € (0,7, (8.35Db)
™™ (2,0) = g™ (2) for all z € (0, L). (8.35¢)

Unlike the case in Section m this time we cannot multiply (8.35] - ) by v™ (x,t)
then integrating over (0, L) since non-vanishing uncontrollable boundary terms pop
out after integrating by parts. To overcome this, we differentiate ) with respect
to ¢t and then multiply the resulting equation with v;""(z,¢) and obtain that

(0™ (0,07 (1)) ooy — (W (0,00 ™(0)) 1o gy = 008 (0) -

$$LEZ’ (

It is easy to see that

(W™ (), ™ (0)) a0y = 3 o2 Do

Since v;""(0,t) = v,""(L,t) = 0, integrating by parts we have

(O gy = 0D a0y

As a consequence,

e ) oy + 10 Bl
S QH 2 D) 2200, 5”%7 ('at)H%%o,L);

thus the Gronwall inequality implies that

s IO < (I Oy + [ 1 0yt

Using (8.35p,c), we further conclude that

2
Ir[loa%( o™ (5 |72 0,1

T
<C[%fhmé@m+wmhmﬁmm+kHﬁmhw@@mﬂg

T
Clia B + 1Oy + | 1527 OB, (530



§[8.5] 1-Dimensional Heat Equations with Dirichlet Boundary Condition 183

where we emphasize that v2;" = (v™""™)g and g2 = (9™™)za-
Suppose that f e €([0,T]; L*(0, L)) with f; € L*(0,T; L*(0, L)). Then

T
O gy + LDt =0 s o
0

The convergence of |g1:™ | 12(0,2) to 0 as n,m — o0; however, is a bit trickier. We first
note that g € H*(0, L) does not guarantee g™ | 2(,2) — 0. For example, if g = 1
is a constant function, then the weak derivatives ¢’ = ¢” = 0 which suggests that
g€ H?*(0,L), but for m > n,

which clearly suggests that g2 z2(0,z) — o as m — oo. The key here is that the

) 2 k © .
basis {\/; sin %x}kﬂ we use does not always satisfy the property that

2 0]

(%) akSIH@ ij <d$> Slnk%x, (8.37)

d . . . .
where o 18 the weak differential operator, and {ay}y; is a sequence that decays very
X

. .k
fast (so that the sum make senses). For (8.37)) to hold, the function »; ay sin % and
k=1
its weak derivative has to vanish at x = 0 and x = L. In fact, we have the following

LEMMA 8.45. If g€ H*(0,L) and g(0) = g’(0) = g(L) = g'(L) = 0, then the partial

sum
\/>Z sin@, where g(k \/>f sm@dm

has the property that
lim (g — gm)”Hm(o,L) =0.

n,Mm—00

Proof. 1f g€ H?*(0,L) and ¢(0) = ¢'(0) = g(L) = = 0, then

g"(k) = \/7f "(x) sin ]m—xdx = ——\/7‘[ ) cos lm—xd:ﬂ
k2 2 k k? 2
= \/7f sin Lxdx =~ g(k) .

As a consequence,
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2 1 k22 . knx
L gia) = =7 3 a0 s T

o0
2. ¢" € L*(0, L) if and only if Y] |k:|4‘§(k;)‘2 < oo
k=1

thus for m > n,
m k272 2
[(gn — gm)”Hiﬂ(O,L) - Z ‘ng(k>‘
k=n+1

which converges to 0 as n, m — c0. O

In addition to f € €([0,T]; L?(0, L)) with f; € L*(0,T; L?(0, L)), we now assume
further that g € H2(0, L) with g(0) = ¢’(0) = g(L) = g'(L) = 0. Then Lemma [8.45]
suggests that v;"™ is a Cauchy sequence in €([0,T]; L*(0, L)). Similarly, multiplying
(8.35p) by v™™ and then integrating over the interval (0, L), with the help of the

Gronwall inequality, provides the estimate

max [0 (1) 2201 < C[ 19" 2o + f|f”m D00t

te[0,T7]

Moreover, using (8.35a) we can also conclude that

e [0 Oy < e [[407 COltoy + 157 D)o |

thus v™™ is a Cauchy sequence in €([0,T]; H*(0,L)). Therefore, u, converges
uniformly to some function u € €([0,T]; H*(0, L)) (which also implies that .,

converges uniformly to wu,, € €([0,T]; L*(0,L))) and u,; converges uniformly to
u; € €([0,T]; L*(0, L)), and u satisfies

ma | o) 200, + [u(®)] 20 |

<o) r (8.38)
lshaon + mo 1Ol + [ 13O s00t]
tE[O,T] 0

Therefore, we establish the following

THEOREM 8.46. Let f € ¢([0,T]; L*(0,L)) with f; € L*(0,T;L*(0,L)) and g €
H?(0, L) with g(0) = g'(0) = g(L) = g'(L) = 0, then u defined in (8.34)) is a solution
to (8.33). Moreover, u satisfies (8.38)).
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8.6 Exercises
PROBLEM 8.1. Prove Lemma [R.10

PROBLEM 8.2. Let f be a 27-periodic Lipchitz function. Show that for n > 2,

1+ 2logn

L) flgoam (8.39)

If = Fpgr * fllroem <

and 1 ¢
2m(1 + logn
17 = 500 M oy < B Florcry (8.40)

Hint: For (8.39)), apply the estimate

n—+1 T }

Fo(w) < min { ==,
(%) < min 27 ' 2(n + 1)a?

in the following inequality:

10 Faes@l <[ [+ [ [ s n - s@lRama

™

with § = For (8.40f), use |) and note that

n+1

inf — . < _Fn e .
nt | = plue < f ~ Fox flusen

PROBLEM 8.3. A function f : T — R is said to be piecewise € if there are finitely
many disjoint open intervals I; so that f € €'(I;) for all i and | JI; = T. Show that

D,, = f converges to f uniformly as n — o0 on any compact subset of ;.
PROBLEM 8.4. In this problem, we are concerned with the following

THEOREM 8.47 (Bernstein). Suppose that f is a 2m-periodic function such that for

some constant C and o € (0,1),

inf — om < Cn™¢
el If —plrem n

for alln e N. Then f e €%(T).

Complete the following to prove the theorem.
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. Suppose that there is p € &, (T) such that

[p"Iz=(xy >y lplemy <1, and p'(0) = [p[le )
Choose vy € [—z, E] such that sin(ny) = —p(0) and cos(nvy) > 0, and define o, =
n’'n

v+ — (k + 1) for —n < k < n. Show that the function r(x) = sinn(x —v) — p(x)

has at least one zeros in each interval (o, agy1).

Let s € N be such that such that 0 € (g, as11). Show that r has at least 3
distinct zeros in (g, as11) by noting that 7/(0) < 0 and 7(0) = 0.

Combining 1 and 2, show that
[ |y < nlplrery  Vpe Pu(T). (8.41)

Choose p, € Z,(T) such that || f — pn|| < 2Cn~ for n € N. Define ¢y = p;, and

Gn = Pan — pan—1 for n € N. Show that Z ¢» = f and the convergence is uniform.
n=0

Show that |, [ =) < 6C27"*. As a consequence, show that
|Qn(x) - Qn(y>‘ < 60n2n(lia)|x - y| and ‘Qn(x) - Qn<y)| < 12027

1-m

For any z,y € T with |z —y| < 1, choose m € N such that 27" < |z —y| < 2
Then use the inequality

@) = 1)) < 3 |in(@) - aalw) \+2\qn — ay)|

to show that |f(z) — f(y)| < Blz — y|* for some constant B > 0.

PROBLEM 8.5. Show that {wy};, defined in Remark is an orthonormal basis
of H'(0,7).

Hint: Use the Parseval identity to show that {wy}{, is a maximal orthonormal set
of H'(0,7); that is, show that for all f € H'(0, ),

om = | (F@F+ 17 = X wmon”

You might need the fact that {\/5 sin k::r}oo is an orthonormal basis of L?(0, ).

™ k=1
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PROBLEM 8.6. Let f(z) = z on [, 7). Then f'(x) = 1is certainly a L*(—7,7)-

function. However, you may want to check that Z In|?| f f(n )|? = o0, so by “definition”,
n=—0oo

it does not seem to be a function in H'(—n, 7). What is wrong with the argument?

PROBLEM 8.7. Show that H'!(T) is the completion of the normed space (€(T), | -
Jer2(m))-

PROBLEM 8.8 (Generalized Gronwall inequality). Show that if a € L'(0,7T) is a

non-negative function, and x(t) satisfies the following integral integral inequality

z(t) < M +J a(s)z(s)ds.

0
t

Then z(t) < M exp (f

a(s) ds) for all ¢t € [0, T]. In particular, if x satisfies
0

2 () < b(t) + a(t)x(t)

for some a,b e L'(0,T) and a > 0, then

t

z(t) < [2(0) + b 10 ] exp <J a(s) ds) Vtel0,T].

0
PROBLEM 8.9. Use Fourier series to formally solve the following initial-boundary

value problem for the wave equation

) n (0,1) xR,
0,t) =u(l,t) =0 for all t,
u(z,0) = f(z), w(x,0)=g(z) Vael0,1].
Derive the following two conservation laws from your Fourier series solution and

directly from the PDE:

1
ad [\ut(x,t)\z + 02]ux(a:,t)]2]dx —0.
dt J,

PRrROBLEM 8.10. Use Fourier series to formally solve the following initial-boundary

value problem for the Schrodinger equation

iug(z,t) = —ug(x,t) in (0,1) xR,

u(0,t) = u(l,t) =0 for all ¢,
u(z,0) = f(z) Vzel0,1].
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Derive the following two conservation laws from your Fourier series solution and

directly from the PDE:

q q
%J (e, £)2dz = 0, %J o (z, )2 = 0.
0 0

PROBLEM 8.11. Try using the Fourier series to solve

ur(z,t) = uge(z, 1) in (0,7) x (0,00),
u(0,t) = uy(m,t) =0 for all ¢,
u(z,0) = f(x) Vael0,n].

The most important task is to look for a suitable basis that fits the boundary condition.

PROBLEM 8.12. Let (r, ) be the polar coordinate on R2.

(1) Show that a harmonic function u on 2 = R? satisfies

1 1
;(rur)r + 3o = 0 r>0.

(2) For a > 0, let , be the wedge given in polar coordinates (r, ) by

Qo ={(r,0)|0<r<1,0<6<a}.
Based on the fact that the general solution to

r*R"(r) +rR'(r) — s*R(r) = 0

is of the form R(r) = Cyr® + Cor~*, use the Fourier series to find a bounded

solution to the following boundary value problem
Au =0 in €.,
u=0 on {0=0,a},

u:sin<g) on {r=1}.
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Hint: Suppose that u(r,0)
basis of L?(0, a) satisfying certain boundary conditions (you have to figure out

what these boundary conditions are). Solve Ry, by finding an ODE for Rj.

= 2 Bi(r)

(3) Find all @ > 0 so that u € €2(€,).

PROBLEM 8.13. Complete the following.

ex(0), where {e;} forms an orthonormal

(1) Suppose that {e,}*_, is an orthonormal basis of L*(0, ;) and {&,,}%

thonormal basis of L%(0, £3). Show that {e,(z)
[0, £5]).

Hint: Check the orthonormality and the maximality. For the maximality, check

basis of L*([0, 1] x

the Parseval identity.

(2) Solve the following PDE:

€m(Y) }om=1 forms an orthonormal

u(z,y,t) — Au(z,y,t) =0 (x,y) € (0,m) x (0
u(z,y,0) = z(r — x)siny (x,y) € (0,7) x (0,7),
up(0,y,t) = up(m,y,t) =0 ye(0,m),t>0,
u(z,0,t) = u(x,m,t) =0 xe (0,m),t>0
u=20
U, =0 —Au=0 uy =0

Uli—g = z(m — x)siny

(3) Show that for all ¢ >

0, u from (b)

u=20

) satisfies

j J lu(z,y,t) |dxdy+2jf f |\Vu(zx,y,s) |dxdyd3——.

_, is an or-



Appendix A

Review of Elementary Analysis

In this chapter of appendix, we review some of the most important contents from

elementary analysis.

A.1 Differential Calculus

A.1.1 Bounded Linear Maps

Before defining the differentiability of functions of several variables, we introduce the

notion of a bounded linear map.

DEFINITION A.1. A map L from a vector space X into a vector space Y is said
to be linear if L(cxy + x9) = cL(z1) + L(z3) for all 1,29 € X and ¢ € R. We often
write Lx instead of L(z), and the collection of all linear maps from X to Y is denoted
by Z(X,Y).

Suppose further that X and Y are normed spaces equipped with norms | - [|x and

|- |y, respectively. A linear map L : X — Y is said to be bounded if

sup ||Lx|ly < oo.
|zl x=1

The collection of all bounded linear maps from X to Y is denoted by #(X,Y), and

the number sup |Laz|y is often denoted by ||L|zx,v).
[z x=1

EXAMPLE A.2. Let M, s, = {n x m matrix with entries in R}, and we remind the

190
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readers that if A € M, «,,, then A : { R™ — R . Define
z — Az
A
Al = sup [Azl, =sup 22 v A€ M
l2lp=1 220 ||
| Az]|,

x#0,1€ Rm}. Therefore,

that is, || A, is the least upper bound of the set {
| Az

(g

(e

< ||A], Va # 0; thus
|Aal, < |Al Jel, VzeR™.
Consider the case p = 1,p = 2 and p = o respectively.
1. p=2: Let (-, )gs denote the inner product in Euclidean space R*. Then
|Az|3 = (Az, Ax)gn = (z, AT Az)gm = (v, PAPT2)gm = (P 2, AP 2)gn

in which we use the fact that ATA is symmetric; thus diagonalizable by an
orthonormal matrix P (that is, ATA = PAPT, PTP = I, A is a diagonal matrix).

Therefore,

sup HAng = sup (PTx,APTx) = sup (y,Ay) (Lety= PTz, then lyle = 1)

lzl2=1 [z]2=1 lyl2=1
= sup (A7 + Xoys + -+ Ay2)
[yl2=1
= max {/\1, e ,/\n} — maximum eigenvalue of AT A

which implies that |A[y = 4/maximum eigenvalue of ATA.

2. p=00: |Alw = sup [Az|, = max {Z Jagsl, Y laggl -+ !anj\} :
j=1

[z]loo=1 j=1 j=1

Reason: Let @ = (z1, 22, -+ ,2,)T and A = [a;] . Then

nx

an Ty + -+ Ay Tm

211 + *++ + A2 Tm
Ax = .

Ap1X1 + -+ A Tm
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Assume max Z la;;| = Z lay;| for some 1 < k < n. Let

7=1

z = (sgn(ar1),sgn(arz), - -+ ,sgn(ar,)) -

Then ||z], = 1, and [|Az|e = D] |ak;|-
j=1
On the other hand, if |z], = 1, then

m m m m
a1 + @y + -+ Qi T | < Z || < max {Z |ay;l, Z |ag;l, - Z |anj|} ;
j=1 j=1 j=1 j=1

7=1
largest sum of the absolute value of row entries.

3.p=1: Al = max{Zraﬂr,Z\aizw,--- ,Zraim\}-
i=1 =1 i=1

EXAMPLE A.3. Let L : R" — R™ be given by Lz = Az, where A is an m x n matrix.
Then Example shows that |L||z@n rm) is the square root of the largest eigenvalue
of AT A which is certainly a finite number. Therefore, any linear transformation from

R™ to R™ is bounded.

thus [|A], = max Z lai;l, Z lag;l, -+ ] ]anj]}. In other words, ||A] is the
j=1

EXAMPLE A.4. Let ¥ be the collection of all continuous real-valued functions on
the interval [0, 1]; that is,

¢ = {f:[0,1] > R| f is continuous on [0,1]} .

For each f € €, we define

[J1|f(x)|pdx]; if1<p<oo,

£l = )
xrg[gf]l()! if p=o0.
The function | - |, : € — R is a norm on 4 (Minkowski’s inequality).

PROPOSITION A.5. Let (X, ||| x) and (Y, |-|y) be normed spaces, and L € B(X,Y).
Then

|Lzlly .
HLH%(X,Y) = Slj}g B = inf {M > 0| HLZEHY < MHJJHX} :
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In particular, the first equality implies that
ILz|y < |L|axy)|z|x VeeX.

PROPOSITION A.6. Let (X, |-|x) and (Y, |-|y) be normed spaces, and L € £ (X,Y).
Then L is continuous on X if and only if L € B(X,Y).

PROPOSITION A.7. Let (X, | - |x) and (Y,| - |ly) be normed vector spaces. Then
(%’(X, Y),| - H{@()@y)) is a normed space. Moreover, if (Y,||-|y) s a Banach space,
sois (B(X,Y), | |axy))-

ProproSITION A.8. Let (X,| - |x), Y| |v), (Z,| - |z) be normed spaces, and
LeBX,)Y), KeB(Y,Z). Then KoL e B(X,Z), and

|K o Llgxz) < |K|zv.zlLlzcxy) -
We often write K o L as KL if K and L are linear.

From now on, when the domain X and the target Y of a linear map L is clear, we

use |L|| instead of |L| z(x,y) to simplify the notation.

THEOREM A.9. Let (X,| - |x) and (Y| - |y) be normed spaces, and X be finite
dimensional. Then every linear map from X to Y is bounded; that is, £ (X,Y) =
B(X,Y).

THEOREM A.10. Let GL(n) be the set of all invertible linear maps on R"; that is,
GL(n) = {L € L(R",R")| L is one-to-one (and onto)} .
1. If L € GL(n) and K € B(R™,R") satisfying |K —L||L7'| < 1, then K € GL(n).
2. GL(n) is an open set of B(R™,R").
3. The mapping L — L' is continuous on GL(n).

REMARK A.11. Even though 2 is a direct consequence of 1 in Theorem [A.T0] there
is another way to see that GL(n) is open in Z(R™,R"). Let M(n) be the collection

of n x n real matrices, and | - |2 be the matrix norm. Also define || - || : M(n) — R by

| A = max {[ay| | A = [ay]1 <i,7 <n}.
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Then || - | is also a norm on M(n). Since M(n) is finite dimensional (in fact,
dim M(n) =n?), |- | and | - ||» are equivalent norms on M (n); that is, there exists
C, ¢ > 0 such that

Al < Al < ClA| VA& M(n).

Let {Ax}, € M(n) be a sequence of n x n real matrices. The equivalence between
| -] and | - |2 implies that Ay — A in M(n) if and only if each entry of Aj converges
to corresponding entry of A. Therefore, the determinant function is continuous on
M(n). In other words,

Ahm det(Ax) = det(A) VAe M(n).

Since GL(n) can be viewed as the collection of n xn matrices with non-zero determinant;
that is,

GL(n) = {A € M(n)| det(A) # 0},
by the continuity of the determinant function and the fact that the pre-image of open

sets under continuous functions are open, we conclude that GL(n) is open in M(n).

A.1.2 Definition of Derivatives

DEFINITION A.12. Let (X, |- |x) and (Y, - [ly) be two normed spaces. A map
f:Ac X — Y is said to be differentiable at xq € A if there is a bounded linear
map, denoted by (Df)(xg) : X — Y and called the derivative of f at xq, such that

o @) = fa) = (Do) = a0,

g | = ol x

TEA

where (D f)(zo)(x — zo) denotes the value of the linear map (D f)(xo) applied to the
vector x — xg € X (so (Df)(xzo)(x — z9) € Y). In other words, f is differentiable at
xg € A if there exists L € A(X,Y) such that

Ve>0,30 >0 3 |f(x)—f(xo)—L(z—x0)|y < &l|lxr—x0|x whenever z € B(zg,d)nA.
If f is differentiable at each point of A, we say that f is differentiable on A.

EXAMPLE A.13. Let f : GL(n) — GL(n) be given by f(L) = L', where GL(n)
is defined in Theorem . Then f is differentiable at any “point” L € GL(n) with
derivative (Df)(K) € Z(GL(n),GL(n)) given by (Df)(L)(K) = —L 'K L™ for all
K € GL(n). The proof is left as an exercise.
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THEOREM A.14. Let (X, | |x), (V.| |ly) be normed vector spaces, U < X be an
open set, and f : U — Y be differentiable at o € U. Then (Df)(xo) is uniquely
determined by f.

REMARK A.15. Let &Y < R"™ be an open set and suppose that f : U4 — R™ is
differentiable on &. Then Df : U — Z(R",R™). Treating D f as a map from U to the
normed space (Z(R",R™), |- ||z~ rm)), and suppose that Df is also differentiable on
U. Then the derivative of D f, denoted by D?f, is a map from U to B(R", B(R", R™)).
In other words, for each a € U, (D?f)(a) € B(R", B(R",R™)) satisfying

- |(Df)(@) = (Df)(a) = (D*f)(a)(z — a)

z=a |z — afen

(R Rm)

=0,

here (D?f)(a) is bounded linear map from R" to (R™, R™); thus (D*f)(a)(z —a) €
B(R",R™).

DEFINITION A.16. Let {e;}}_; be the standard basis of R", I/ < R" be an open set,

a€lU and f:U — R be a function. The partial derivative of f at a in the direction
of

aixj(a), 18 the hmlt

e;, denoted by

- flathe)  f)
h—0 h

if it exists. In other words, if a = (a1, - ,a,), then

ﬁ(a) — lim f(al,... y Aj—1, Q5 +h,aj+1,-.- ’an) _f(al,"' ,an) |
0w, h—0 3

THEOREM A.17. Suppose U < R™ is an open set and f : U — R™ is differentiable at
a € U. Then the partial derivatives g‘fi(a) exists for alli =1,---m and 5 =1,---n,
Py
and the matrixz representation of the linear map D f(a) with respect to the standard
basis of R™ and R™ is given by
[ Jfi h i
6751(&) E(a)

[(Df)(a)] = : : or [<Df)<a)]ij
Doy oo gy

ox1 oxn,

0fi

al'j

().
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DEFINITION A.18. Let &/ € R"™ be an open set, and f : U4 — R™. The matrix

[ 0f1 Jf1 [ J0f1 0f1 )
)= + -~ 1 |(v)= : - :
O fm O fm 0 fm 0fm

is called the Jacobian matrix of f at x (if each entry exists). If n = m, the
determinant of (Jf)(z) is called the Jacobian of f at .

REMARK A.19. A function f might not be differential even if the Jacobian matrix
J f exists; however, if f is differentiable at gy, then (Df)(z) can be represented by

(Jf)(@); that is, [(Df)(x)] = (Jf)(2).
REMARK A.20. For each x € A, Df(x) is a linear map, but Df in general is not

linear in z.

DEFINITION A.21. Let 4 < R"™ be an open set. The derivative of a scalar function
f U — R is called the gradient of f and is denoted by gradf or V f.

A.1.3 Properties of Differentiable Functions
Continuity of Differentiable Maps

THEOREM A.22. Let (X, | - |x) and (Y,| - |ly) be normed spaces, U = X be open,

and f: U — Y be differentiable at xo € U. Then f is continuous at xg.
Proof. Since f is differentiable at x¢, there exists L € #(X,Y) such that
361> 03| f(z) = f(w0) — L(z — 20)|y < |z — 20| x Ve Blxg,d).

As a consequence,

|f@) = fzo)|y < (IZ]+ 1)z — 2ol x Ve Blxo,d1). (A1)
For a given € > 0, let 6 = min {51, 2(|Li+1)} Then 6 > 0, and if = € B(xo,9),
|£(2)~ o)l < 5 << D

2
REMARK A.23. In fact, if f is differentiable at xq, then f satisfies the “local Lipschitz

property”; that is, there exists M = M(zo) > 0 and 0 = d(zp) > 0 such that if
|z — 2ol x < 9 then f(z) — f(xo)|y < M|z — x| x since we can choose M = |L| + 1
and 0 = 0, (see (A.1))).
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The Product Rules and Gradients

PROPOSITION A.24. Let U < R™ be open, and f : U — R™ and g : U — R be
differentiable at xg e U. Then gf : U — R™ 1is differentiable at xy, and

D(gf)(xo)(v) = g(x0)(Df)(w0)(v) + (Dg)(wo)(v) (o). (A.2)
Moreover, if g(xo) # 0, then ! :U — R™ is also differentiable at xq, and D(i)({[’o) :
R™ — R™ s given by I I

D(g)(%)(v) _ g(ﬂfo)((Df)(550)(1’9)2)(:);0)(D9)(930)(U)f(930) . (A3)

The Chain Rule

THEOREM A.25. LetUd < R" and V < R™ be open sets. Suppose that f U — R™
is differentiable at xo €U, f(U) SV, and g : V — R* is differentiable at f(xo). Then
the map F = go f:U — R’ defined by

F(z) = g(f(x)) Veel

is differentiable at xy, and

(DF)(w0)(h) = (Dg)(f(w0)) (D) (x0)(R))

or equivalently,

(DF) ), = 30 22 (F(a0)) P ao).

= 0 i

The Mean Value Theorem

THEOREM A.26. Let U < R™ be open, and f : U — R™ with f = (f1,-+, fm)-
Suppose that f is differentiable on U and the line segment joining x and y lies in U.

Then there exist points cq,--- , ¢, on that segment such that

fity) = file) = (Dfi)(e)(y —x)  Vi=1,--- m.

COROLLARY A.27. Let U < R™ be open and convez, and f : U — R™ be differen-

tiable. Then for all x,y € U, there exists c¢1,- -+ , ¢, on TY such that

fily) = fi(x) = (Dfi)(e)(y — ).
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THEOREM A.28. Let U < R"™ be open, K < U be compact, and [ : U — R be of
class €. Then for each € > 0, there exists 6 > 0 such that

[f(y) = f@) = (D)) (y —2)| <ely —alen if |y—a|en <0 and 2,y e K.

COROLLARY A.29. LetUU < R" be open, K < U be compact, and f :U — R™ be of
class €*. Then for each € > 0, there exists 6 > 0 such that

|f(y) = f@) = (Df)(2)(y — 2)

am <Ely—x|rn if |y—2|pe <9 andz,ye K.

A.1.4 Conditions for Differentiability

PROPOSITION A.30. Let U < R" be open, a€ U, and f = (f1, -, fm) : U — R™.
Then f is differentiable at a if and only if f; is differentiable at a for alli=1,--- ,m.

In other words, for vector-valued functions defined on an open subset of R,
Componentwise differentiable < Differentiable.

THEOREM A.31. LetUU < R™ be open, ae U, and f: U — R. If each entry of the

Jacobian matrix [&f &f] of f
ox1 o0xy

1. exists in a neighborhood of a, and

2. s continuous at a except perhaps one entry.
Then f is differentiable at a.

DEFINITION A.32. Let &/ < R” be open, and f : U — R™ be differentiable on
U. f is said to be continuously differentiable on U if Df : U — AB(R",R™) is
continuous on U. The collection of all continuously differentiable mappings from U to
R™ is denoted by €' (U;R™). The collection of all bounded differentiable functions
from U to R™ whose derivative is continuous and bounded is denoted by %} (U; R™).

In other words,
¢'(U;R™) = {f : U — R™ is differentiable| Df : « — A(R",R™) is continuous}
and

G UR") = {f € 6 U R™)

Sup ()] + sup | D (&) |gar oy < 0}
el reld
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COROLLARY A.33. Let U < R" be open, and f:U — R™. Then f € €' (U;R™) if

and only if the partial derivatives % exist and are continuous on U fori=1,--- . m
J

and j=1,---,n

PROPOSITION A.34. Let U = R™ be open. Given f € €} (U;R™), define

Hf“o”l(u]gm —SU_p [|f |+ZZ‘5]‘} ]

i=17=1

Then (€, (U;R™), | - Hcgbl(u;Rm)) is a Banach space.
Proof. Left as an exercise. o

DEFINITION A.35. Let f be real-valued and defined on a neighborhood of xy € R",

and let v € R™ be a unit vector. Then

(Dyf)(zo) = % t:of(xo +tv) = ,15_,0 flxo + t\;) — f(z0)

is called the directional derivative of f at xy in the direction v.

REMARK A.36. Let {e;}7_; be the standard basis of R". Then the partial derivative
o f

a—(xo) (if it exists) is the directional derivative of f at z in the direction e;.
Ly

THEOREM A.37. LetU < R" be open, and f : U — R be differentiable at xo. Then
the directional derivative of f at xo in the direction v is (Df)(zo)(v).

Proof. Let € > 0 be given. Since f is differentiable at xq, there exists > 0 such that

|f(z) = fzo) — (Df)(xo)(z — 0)| < ng — Zo|re whenever |z — zg|grn < 9.

In particular, if x = z + tv with v being a unit vector in R” and 0 < |t| < §, then

f(%thVt)—f(xo) (Df) ()

|f(x) = f(w0) — (Df)(wo)(x — x0)]

2

thus (Dy f)(zo) = (D f)(z0)(V). o

‘ f@o +1v) = f(zo) = (Df)(wo) (tv)]
il

<e€;

~

Do ™
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REMARK A.38. When v € R" but 0 < ||v|ge # 1, we let v = ﬁ Then the
v R
direction derivatives of a function f: U € R” — R at a € U in the direction v is

fla+tv) = fla)

(Dyf)(a) = lim

t—0 t
Making a change of variable s = ” t . Then
V|Rn
(DF)(0)(v) = [olar(DA) o)) = o] lim DOV _ gy Tl o) 2 J(0)

We sometimes also call the value (D f)(xo)(v) the “directional derivative” of f in the

“direction” v.

A.1.5 Higher Derivatives of Functions

Let U < R™ be open, and f : U — R™ is differentiable. By Proposition [A.7] the space
(B(R",R™),]| - | #®nrm)) is a normed space (in fact, it is a Banach space), so it is
legitimate to ask if Df : U — Z(R",R™) is differentiable or not. If Df is differentiable
at xg, we call f twice differentiable at z(, and denote the twice derivative of f at z as
(D?f) (o). If Df is differentiable on U, then Df : U — 2(R", Z(R",R™)). Similar,
we can introduce three times differentiability of a function if it is twice differentiable.

In general, we have the following

DEFINITION A.39. Let (X, |- |x) and (Y, | - |y) be normed spaces, and U < X be
open. A function f:U — Y is said to be twice differentiable at a € U if

1. f is (once) differentiable in a neighborhood of a;

2. there exists L, € #(X,%(X,Y)), usually denoted by (D*f)(a) and called the

second derivative of f at a, such that

. |(Df)(x) — (Df)(a) = La(z — a)

z—a |z = alx

B(X,Y)

=0.

For any two vectors u,v € X, (D*f)(a)(v) € Z(X,Y) and (D?f)(a)(v)(u) € Y. The
vector (D?f)(a)(v)(u) is usually denoted by (D?f)(a)(u,v).

In general, a function f is said to be k-times differentiable at a € U if
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1. fis (k — 1)-times differentiable in a neighborhood of «;

2. there exists L, € B(X, B(X, - ,B(X,Y)---)) , usually denoted by (D*f)(a)
N S

~
k copies of “X” k copies of ¢)”

and called the k-th derivative of f at a, such that

O~ (00— Lo~ a)

#—a |z = alx

AXAX - BEKY))

For any k vectors u(",---u® e X the vector (D*f)(a)(u™, - u®)) is defined as
the vector
(D* (@) (@) (@®D) - (D).

REMARK A.40. We focus on what (D*f)(a)(uz)(: -+ )(u1) means in this remark. We
first look at the case that f is twice differentiable at a. With © = a + tv for v e X
with |v|x = 1 in the definition, we find that

- |(Df)(a+tv) = (Df)(a) = t(D*f)(a)(v)

t—0 |¢]

B(X,Y)

=0.

Since (Df)(a + tv) — (Df)(a) — t(D?*f)(a)(v) € B(X,Y), for all u € X with |ulx =1

we have

|(Df)(a + tv)(w) — (Df)(a)(u) — t(D*f)(a)(v)(w)],

lim

t—0 |t|
- g Do+~ 26) - P
t—
< iy [(Df)(a+tv) - (Df)(Tt)’—t(DQf)(a)(U)L%(X,y) Y

On the other hand, by the definition of the direction derivative,

(Df)(a+ tv)(u) — (Df)(a)(u) = lim [f(“”“”“) —flattv)  flatsu)— f(a)] ;

s—0 S S

thus the limit above implies that

(D2f)(a)(v)(u) = lg%h_l,% fla+tv+ su) — f(a ~|;ttv) — f(a+ su) + f(a)
I fla+tv+ su) — f(a+tv) r fla+ su) — f(a)
= lim 520 s - 5
t—0 m
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Therefore, (D?f)(a)(v)(u) is obtained by first differentiating f near a in the u-direction,
then differentiating (D f) at a in the v-direction.

In general, (D*f)(a)(ug) - (uy) is obtained by first differentiating f near a in
the ui-direction, then differentiating (D f) near a in the ug-direction, and so on, and

finally differentiating (D*~'f) at a in the w-direction.

REMARK A.41. Since (D?f)(a) € B(X,B(X,Y)), if v,v5 € X and c € R, we have
(D2f)(a)(cvy +v2) = c(D?f)(a)(vy) + (D*f)(a)(vs) (treated as “vectors” in B(X,Y));
thus

(D*f)(a)(cvr + v2)(u) = e(D*f)(a)(v1)(u) + (D*f)(a)(v2)(u) Y, v,02€ X
On the other hand, since (D?f)(a)(v) € B(X,Y),
(D*f)(a)(v)(cur + uz) = e(D*f)(a)(v)(ur) + (D*f)(a)(v)(u2)  Vur,up,veX.

Therefore, (D?f)(a)(v)(u) is linear in both u and v variables. A map with such kind
of property is called a bilinear map (meaning 2-linear). In particular, (D?*f)(a) :
X x X — Y is a bilinear map.

In general, the vector (D*f)(a)(u, - ,u®) is linear in u™®, - .. u®; that is,

(Dkf>(a)(u(l)’ o u Y qu + Bw, Y ,u(k)>
— a(DF£)(@)(u®, - ul=D D 8
AR F) (@), a0, )

forall v, we X, a,6€R,and i = 1,--- ,n. Such kind of map which is linear in each
component when the other k¥ — 1 components are fixed is called k-linear.

Consider the case that X is finite dimensional with dim(X) = n, {el, €, ... ,en}
is a basis of X, and Y = R. Then (D?f)(a) : X x X — Y is a bilinear form (here the

term “form” means that Y = R). A bilinear form B : X x X — R can be represented

as follows: Let a;; = B(e;,e;) € R for i,j = 1,2,--- ,n. Given z,y € R", write
u= > ue; and v = ) v;e;. Then by the bilinearity of B,
i=1 j=1
aix - Ain U1

B(u, /U) = B(ZUiei, Z/UJGJ) = 2 uivjaij = I:ul C u”:l
i—1 j=1

5,7=1
Qp1 *°°  Qnpn Un
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Therefore, if f : U4 < R™ — R is twice differentiable at a, then the bilinear form

(D?f)(a) can be represented as
(D*f)(er,e1) -+ (D*f)(a)(er,en)

U1
(D2f)(a)(u,'u) = [Ul Un] : . : :
(D*f)(en,e1) -+ (D*f)(a)(en,en) | L™
The following proposition is an analogue of Proposition [A.30] The proof is similar

to the one of Proposition [A.30] and is left as an exercise.

PROPOSITION A.42. LetU < R™ be open, xog €U, and f = (f1, -, fm) : U —> R™.
Then f is k-times differentiable at xo if and only if f; is k-times differentiable at xq

foralli=1,--- m.

Due to the proposition above, when talking about the higher-order differentiability
of f:U < R* - R™ and a point zy € U, from now on we only focus on the case

m = 1.

PROPOSITION A.43. LetU < R™ be open, and f : U — R. Suppose that f is k-times

differentiable at a. Then for k vectors uV, .- u® e R",

" o't 1, (2) (k)
(D*F)(@)(u®, - ,u®) = I
jl,-;k1 01, 0wy, _, - 0xj J1 T2 ix

where u = (ugi),ug), . ,ug)) foralli=1,--- k.

Proof. Let {e;}"_; be the standard basis of R”. By Remark (on multi-linearity),

J=1

it suffices to show that
orf
(Dkf)(a)<ej17 T 7ejk)

0w, 0xjy -+ 0wy,

(a) (A.4)

since if so, we must have

n

(D)@, u®) = (D N@)( 3] ulles, o Y ulley,)

Jji=1 Jr=1

= 20 20 L DEN@) e e )

= Z / (a)u(-l)u(-2) o

. . . . J1 g2 Tk
0w, 0T, _, dxj,

Jiyde=1
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We prove the proposition by induction. Note that the case k = 1 is true because of
Theorem [A.17] Next we assume that holds true for k = £ if f is (¢ — 1)-times
differentiable in a neighborhood of a and f is /-times differentiable at a. Now we show
that also holds true for k£ = ¢ + 1 if f is /-times differentiable in a neighborhood
of a, and f is (¢ + 1)-times differentiable at a. By the definition of (¢ + 1)-times
differentiability at a,

H(sz)(x) - (Def)(a) - (Dg"'lf)(a)(x —a) ||<@(Rn“@(]gn’... B(R" R)-))

o o — ol -0
Since
(D)) = (D' ){a) = (D (@) = a)](e,) - (e ) es,)
<[ N)@) — (0 @)~ (D D@~ a)l(es)+ (en)|

< ”(Dz.f)(x) - (Déf)(a) - (Dé-i_lf)(a)(x - a)Hg(ng(Rn’...7%(Rn7R)...)) )

using (A.4]) (for the case k = ¢) we conclude that

o'f o'f 0+1 , A
lim ‘aszaxjkil...azjl (z) — 0w;,0x;,_, - 01, (a) = (D" f)(a)(ejy, - ve]evm_a)‘
Tr—a H:I,‘ — aHR"
o (O @ e i) = (D@ e ) = (D (@) = a)(es - e5)]
- |z — allgn
(D*f)(x) — (D' f)(a) — (D f)(a) (@ = a)| o pen .. e p)-.
< lim ” Hﬁ(R AR BRUR))
—a |z — af|gn
In particular, if x = a + te;,,, for some jy,.1 = 1,--- ,n, by the definition of partial

derivatives we conclude that

(Dé+1f)(a)(ej17 T € eje+1)
o's

axjﬁaxjk—l T ale

o'f

ax.jlam.jk—l T ale

(a)

((l + te.j2+1)

= lim
t—0 t

aerl
! (a)

axjulaxjeawjkq T a$j1

which is (A.4)) for the case k = ¢ + 1. o
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EXAMPLE A.44. Let f : R? — R be given by f(x1,13) = 22 cos xy, and u™™) = (2,0),
u® = (1,1), u® = (0, —1). Suppose that f is three-times differentiable at a = (0, 0)
(in fact it is, but we have not talked about this yet). Then

(D*f)(a )(u(”7 u(z), u(3))

2
(1) (2)
Z axkﬁmjéa:z u u u Z xgﬁaﬁjaxl Y (=1)

i,5,k=1 j=1
f °f
= 2:1-(—1 2:1-(=1)=0.

EXAMPLE A.45. Let f: R? — R be twice differentiable at a = (a;,a2) € R% Then

the proposition above suggests that for u = (uy,us),v = (vy,v2) € R?,

2

0% f
2 _ 2 — -
(D7 f)(a)(v)(u) = (D*f)(a)(u,v) = ”2_11 5000 (@)uiv;
an a2f 2 62
Tx%(a)f(“ ! + 61‘261‘1 (a)U1 2 61‘10.%’2 (G)UQ ! + 6:U% (a)UZUQ
o f 0% f
[ ] TZL‘%( ) 0$26$1 (CL) lvl]
= |u; u )
1 2 an 627.](‘(&) Uy
0x10xs 03:%
In general, if f : R — R be twice differentiable at a = (ay,--- ,a,) € R". Then for
U = (ula'” ,Un),’U = (U17’” 7Un) ERQ
o2 f o2 f |
72 Gamda Y o
(D f)(a)(v)(u) = [w U] . : :
&2]0 an Un
| 0x10xy, a) o @(@

The bilinear form B : R” x R" — R given by
B(u,v) = (D*f)(a)(v)(u) ~ Yu,veR"

is called the Hessian of f, and is represented (in the matrix form) as an n x n matrix
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by
% f % f 1
Fr LGN P PR
o f o f
| 0210y, @ @(a)

2

If the second partial derivatives (a) of f at a exists for all 4,j = 1,--- ;n (here

O
the twice differentiability of f at a is ignored), the matrix (on the right-hand side of

equality) above is also called the Hessian matriz of f at a.

Even though there is no reason to believe that (D%f)(a)(u,v) = (D?f)(a)(v,u)
(since the left-hand side means first differentiating f in u-direction and then differ-
entiating D f in v-direction, while the right-hand side means first differentiating f
in v-direction then differentiating D f in w-direction), it is still reasonable to ask
whether (D?f)(a) is symmetric or not; that is, could it be true that (D?f)(a)(u,v) =
(D?*f)(a)(v,u) for all u,v € R"? When f is twice differentiable at a, this is equivalent
of asking (by plugging in u = e; and v = ¢;) that whether or not

o*f o*f
(9:cj(9a:i a) N axiax]‘ CL).
The following example provides a function f : R* — R such that (A.5)) does not hold

at a = (0,0). We remark that the function in the following example is not twice

(A.5)

differentiable at a even though the Hessian matrix of f at a can still be computed.

EXAMPLE A.46. Let f : R? - R be defined by

zy(e® —y?) if (z,y) # (0,0),

flzy) =< = +¢
0 if (z,y) = (0,0).
Then . L2y .
oty + dxfy® —y° .
if (z,y) # (0,0),
Ly =1 @y 0200
0 if (v,y) = (0,0),
and

xd — 4:U3y2 — :L'y4
foy) =] @i
0 if (z,y) = (0,0),

if (z,y) # (0,0),
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It is clear that f, and f, are continuous on R?; thus f is differentiable on R?. However,

. +(0,k) — fz(0,0
Fey(0,0) = Jim OB SO0

while

J,(0,0) = lim fy(h,0) - LO.0) _ .

thus the Hessian matrix of f at the origin is not symmetric.

DEFINITION A.47. A function is said to be of class € if the first r derivatives
exist and are continuous. A function is said to be smooth or of class €% if it is of

class € for all positive integer r.
The following theorem is an analogue of Corollary

THEOREM A.48. LetUd — R" and f : U — R. Suppose that the partial deriva-
o f
axjkaxjk—l T ale
for all j}f’f g = 1,---,n. Then f is k-times differentiable at a. Moreover, if

0
axjkaxjka T ale
THEOREM A.49. Let U < R" be open, and f : U — R. Suppose that the mized
of of % 0% f
a{L‘Z’ 87.%]'; a.%'jél‘i’ 5.%](31‘2
continuous at a. Then

o f _ o2 f
ox;0x; (a) = 0,01,
Proof. Let S(a,h,k) = f(a + he; + kej) — f(a + he;) — f(a + ke;) + f(a), and define
o(z) = f(x+ he;) — f(x) as well as (z) = f(z + ke;) — f(z) for = in a neighborhood
of a. Then S(a, h, k) = ¢(a + ke;) — p(a) = ¥(a + he;) — ¢(a); thus the mean value

theorem implies that there exists ¢ on the line segment joining a and a + ke; and d on

exists in a neighborhood of a € U and is continuous at a

tive

is continuous on U, then f is of class €*.

exist in a netghborhood of a, and are

partial derivatives

(a). (A.6)

the line segment joining a and a + he; such that

),

ox;j

Sa,h,k) = p(a+ key) — p(a) = k22 (c) = k(2L (e + hey) -

ox;j ox;j

S(a,hik) =l + he)) = ¥(a) = h22(d) = h(SL(d + key) — 2L ().

As a consequence, if h # 0 # k,

(c+ he)) — 2L ()

ox;

HE @ ey - 2L ) -

S(a,h,k) 1 ( of
ox 0x; T h

hk ox;
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By the mean value theorem again, there exists ¢; and d; on the line segment joining c,
¢+ he; and d, d + ke, respectively, such that
o2 f o2 f
p (dv) = (c1) -
x]ﬁxi &‘xzax]

o%f o%f
axial‘j and 695]6902
¢y — aand dy — a as (h,k) — (0,0). o

The theorem is then concluded by the continuity of at a, and

COROLLARY A.50. Let U < R™ be open, and f is of class €. Then
(D?f)(a)(u,v) = (D*f)(a)(v,u) Vael and u,v e R".
REMARK A.51. In view of Remark [A.40} (A.6]) is the same as the following identity

o qigg £ F Rei & key) — fla+ hey) — f(a + kej) + f(a)
h—0 k—0 hk
i L L@t hei + Key) = fla + hei) — fla + ke;) + [(a)
k—0 h—0 hk

which implies that the order of the two limits lim and IICirr(l] can be interchanged without

h—
changing the value of the limit (under certain conditions).

EXAMPLE A.52. Let f(z,y) = yz?cosy?. Then

foy(T,y) = 22y cosy?), = 2z cosy® — 2xy(2y) siny® = 2x cosy® — 4oy’ siny?,
fyz(,y) = (2% cosy? — ya?(2y) siny?), = (2% cosy? — 22%y” siny?),.
=2z cosy® — day’siny® = fo,(7,y).

A.1.6 The differentiation of the determinant and the Piola
identity

THEOREM A.53. Let U < R" be open, and for each 1 < i,7 <mn, a;; : U — R be
differentiable functions. Define A = [a;j] and J = det(A). Then

oJ . 0A
P tr(AdJ(A)a—xk) Vi<k<n, (A7)
where for a square matriz M = [my;], tr(M) denotes the trace of M, Adj(M) denotes

the adjoint matrixz of M, and (2 denotes the matriz whose (i, j)-th entry is given by
Tk

6mij

oxy
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Proof. By the property of determinant,

209

dail daia aaln
F) Q12 - Ain ai P a1z - Qip a1 A(p—-1)1
Tl 0 X axk
dasy Odago Oaop
oJ P Qo -+ Qop a5 Q23 - Qzp a21 An-12
(97 Tk Tk Tk y
Tk . .
6an1 &anz &anl
= QGn2 " App an1 Ap3 - Gpp An1 - Gpn—1)n
6xk al‘k 6:%
and (A.7)) follows from the expansion of the determinant using the reduction-of-size
recursive formula. o

REMARK A.54. In general, let A be an n x n matrix-valued function, and ¢ be an

operator satisfying 0(fg) = fdg + (6 f)g whenever the product makes sense. Then

§det(A) = tr(Adj(A)SA) = det(A)tr(A'5A), (A.8)

where 0A = [§a;j]nxn if A =

[aij]nxn-
Suppose that ¢ : 2 € R* — R is a given twice differentiable diffeomorphism (thus

det(Ve) # 0). Let M = [V¢], and J = det(M). Then the adjoint matrix of M is

JM~t. With A denoting the inverse of [V], Theorem implies that

Z JAICY 01/}

v 8:133

67‘]_ (M 18M
&xk

(A.9)

ox
k 4,j=1

THEOREM A.55 (Piola’s identity). Let v : Q € R* — R" be of class €* such
that det(Vy) # 0 in Q, and [a;j]axn be the adjoint matriz of [Vi)]; that is, a =
det([VY])[VY]™t. Then

(A.10)

= 0
Za_ .=

[V4)]~. Then aj; = JAJ. Moreover, since

Proof. Let J = det([V¢]) and A =

i ai d;s; thus

n

Ozaik[;A

which, after multiplying the equality above by A and then summing over s, implies
that

AV =

jawr] B Zn: [aAa’ U O ]

" 0wy Oxy, 0T "0xp0xs

r=1

aAJ Zn: Qwr s'

A1l
orp T@xkaxs ( )
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As a consequence,

n 0 . n n ; a2ws . . a2wr g
jZl 6_% A= jler,sZ—ll [JAS axjal’rAg B JAi&xjﬁxs Ai] =0,

where Theorem is applied to conclude the last equality. o

A.2 Integral Calculus

A.2.1 Integrable Functions

DEFINITION A.56. Let A € R" be a bounded set, and f : A — R be a bounded

function. For any partition

1 1 2 2 n n+1
AiliQ"'i7z = ['ZU’El)?x’El-)‘rl] X [a:'z(g)?xggzrl] X X I:.T,En),l‘,gn:_l )]7

P = { D,

ik:0717"'7Nk_1ak:1a"'7n}7

the upper sum and the lower sum of f with respect to the partition P, denoted
by U(f,P) and L(f,P) respectively, are numbers defined by

U(f,P) =Y, sup f'(z,y)v(A),
Aep (@y)eA

LUAP) = 2, inf Pl yu(a),
Aep YIS

where v(A) is the volume of the rectangle A given by

1 1 2 2 n n
v(A) = (@i — ol )iy — ) i - al?)

21 io+1 ~ Vig intl Vi
if A= [xﬁ) — xﬂ)H] X [xg) — xgll] X oo X [a:§jj> — 955:11]’ and [ is the extension of
f by zero outside A given by

(A.12)

The two numbers

J f(z)dz = inf {U(f,P)|P is a partition of A},
A
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and
f f(z)dz = sup {L(f,P)| P is a partition of A}
Ja
are called the upper integral and lower integral of f over A, respective. The

function f is said to be Riemann (Darboux) integrable (over A) if f flz)dx =
A

f(z)dz, and in this case, we express the upper and lower integral as f f(z)dz,
c’zﬁled the integral of f over A. 4

DEFINITION A.57. A partition P’ of a bounded set A < R is said to be a refine-
ment of another partition P of A if for any A’ € P’, there is A € P such that A’ < A.
A partition P of a bounded set A < R" is said to be the common refinement of
another partitions Py, Po, -+, Py of A if

1. P is a refinement of P; for all 1 < j < k.
2. If P' is a refinement of P; for all 1 < j < k, then P’ is also a refinement of P.

In other words, P is a common refinement of Py, Py, -+, Py if it is the coarsest

refinement.

Figure A.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of Py, Ps,--- , Py if for each
j =1,---n, the j-th component ¢; of the vertex (ci,--- ,¢,) of each rectangle A € P

belongs to PZ-U) for some i =1, --- k.

PROPOSITION A.58. Let A < R" be a bounded subset, and f : A — R be a bounded
function. If P and P’ are partitions of A and P’ is a refinement of P, then

L(f,P)< L(f,P)<U(f,P)<U(f,P).

The following proposition provides a theoretical criteria for Riemann integrability

of functions.
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PROPOSITION A.59 (Riemann’s condition). Let A < R™ be a bounded set, and
f:A— R be a bounded function. Then f is Riemann integrable over A if and only if

Ve > 0,3 a partition P of A sU(f,P)— L(f,P) <e

The following theorem provides an equivalent condition of Riemann integrability
using Riemann sum approximation. The Riemann sum approximation is often useful

in writing the limit of Riemann sums as Riemann integrals.

THEOREM A.60 (Darboux). Let A < R"™ be a bounded set, and f : A — R be a
bounded function with extension ?A given by . Then f is Riemann integrable if
and only if 31 € R such that Ve > 0,36 > 03 if P = {Ay,--- ,AN} is a partition of
A satisfying |P| < 0 and a set of sample points & € Ay, & € Ag, -+, Ex € AN, we

have

N
‘ 2 (Ers1)v(Ag) — I‘ <e. (A.13)

The sum ? (&rv1)V(Ag) is called a Reimann sum of f over A.

HM2

THEOREM A.61. Let A < R" be a bounded set, and fr : A — R be a sequence of
Riemann integrable functions over A such that {fi}y, converges uniformly to f on A.

Then f is Riemann integrable over A, and
lim J fr(x)de = f f(z)dz. (A.14)
k—o0 A A

From now on, we will simply use f to denote the zero extension of f

when the domain outside which the zero extension is made is clear.

A.2.2 The Lebesgue Theorem

In this section, we discuss another equivalent condition of Riemann integrability,
named the Lebesgue theorem. The Lebesque theorem provides a more practical way
to check the Riemann integrability in the development of theory. To understand the

Lebesgue theorem, we need to introduce a new concept: sets of measure zero.
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Volume and Sets of Measure Zero

DEFINITION A.62. Let A € R™ be a bounded set, and 14 (or x 4) be the characteristic

function of A defined by
La(2) = 1 ifxeA,
A= 0 otherwise.

A is said to have volume if 1, is Riemann integrable (over A), and the volume of

A, denoted by v(A), is the number | 14(z)dx. A is said to have volume zero or
A

content zero if v(A) = 0.
REMARK A.63. Not all bounded set has volume.

PROPOSITION A.64. Let A < R"™ be bounded. Then A has volume zero if and only
if for every € > 0, there exists finite (open) rectangles Sy, -+, Sy (whose sides are

parallel to the coordinate axes) such that

N N
Ac USk and ZV(Sk) <e.
k=1 k=1

Proof. “=" Since A has volume zero, J La(x) dx = 0; thus for any given € > 0, there

A
exists a partition P of A such that

U(1a,P) < f La(z)de+ S = €.
N 272

Since sup 14(z) = . Now if

1 ifAnA
{ tani#g, we must have >, v(A) <
zeA

0 otherwise, AeP
ANA+Z

AeP and A n A +# ¢, we can find an open rectangle [ ] such that A <[] and

DN ™

N
v() < 2v(A). Let Sy,---,Sx be those open rectangles []. Then A < J Sk
k=1

N
and » v(Sg) <e.
k=1

<” W.L.O.G. we can assume that the ratio of the maximum length and minimum
length of sides of Sy is less than 2 for all k = 1,--- | N (otherwise we can divide Sy
into smaller rectangles so that each smaller rectangle satisfies this requirement).
Then each Sy can be covered by a closed rectangle [J, whose sides are parallel
to the coordinate axes with the property that v([Jx) < 2" '\/n"v(S). Let P
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be a partition of A such that for each A € P with A n A # &, A < S} for some
k=1,---,N. Then

ULaP) = ), v(&) < Y v <27 Va" Y u(S) <20V
k=1

AeP k=1
ANA+Y

thus the upper integral f la(z)dx = 0. Since the lower integral cannot be
_Ja

negative, we must have J
A

volume zero. o

Ly(z) de = f 14(z) dx = 0 which implies that A has
Ja

DEFINITION A.65. A set A € R” (not necessarily bounded) is said to have measure

zero or be a set of measure zero if for every € > 0, there exist countable many

o0
rectangles Sy, Sy, --- such that {S}72, is a cover of A (that is, A< J Sk) and
k=1

é V() < e

PROPOSITION A.66. Let A < R" be a set of measure zero. If B < A, then B also

has measure zero.

Modifying the second part (or the “<=” part) of the proof of Proposition we

can also conclude the following

PROPOSITION A.67. A set A < R™ has measure zero if and only if for every e > 0,

there exist countable many open rectangles Sy, So, --- whose sides are parallel to the
o0 o0

coordinate azes such that A< |J Sk and Y, v(Sk) <e.
k=1 k=1

REMARK A.68. If a set A has volume zero, then it has measure zero.

PROPOSITION A.69. Let K < R" be a compact set of measure zero. Then K has

volume zero.

Proof. Let € > 0 be given. Then there are countable open rectangles S;, .9, -+ such
that

o0

0
K c USk and Zu(Sk)<e.
k=1 k=1

Since {Sk}{.; is an open cover of K, by the compactness of K there exists N > 0 such
N

N ®
that K < |J Sk, while ] v(Sk) < >, v(Sk) < e. As a consequence, K has volume
k=1

k=1 k=1
Zero. o
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Since the boundary of a rectangle has measure zero, we also have the following

COROLLARY A.70. Let S € R" be a bounded rectangle with positive volume. Then

R is not a set of measure zero.

o0
THEOREM A.71. If Ay, Ay, --- are sets of measure zero in R", then | Ay has

k=1
measure 2ero.

Proof. Let € > 0 be given. Since A} s are sets of measure zero, there exist countable
rectangles {S](-k) };O:l, such that

o0 o0
c|Js® and Y u(s®)< o VkeN.
=1 j=1

J 9k+1

Consider the collection consisting of all SJ(-k)’S. Since there are countable many

rectangles in this collection, we can label them as S, Sy, - - -, and we have
e} e} e}
UJa<slY U St U S
k=1 k=1j=
and
ZV(SK):ZZV(SJ )<22k+1 —5<¢
k=1 k=1j=1 k=1
e}
Therefore, | ) Ax has measure zero. D
k=1

COROLLARY A.72. The set of rational numbers in R has measure zero.

THEOREM A.73. Let A < R" be bounded and B < R™ be a set of measure zero.

Then A x B has measure zero in R,

Proof. Let ¢ > 0 be given. Since A is bounded, there exist a bounded rectangle R such

that A < R. Since B has measure zero, there exist countable rectangles {Sy};2, < R™

such that . .
€
c HSk and Z Vm(Sk) < SR

0

Then A x B < |J (R x Sk), and
k=1

oe]

i Vner(R X Sk Z Vm Sk = Vn
k=1

k=1

\MS

nis) <

Since R x Sy is a rectangle for all k € N, we conclude that A x B has measure zero. o



216 CHAPTER [Al REVIEW OF ELEMENTARY ANALYSIS

The Lebesgue Theorem

The Lebesgue theorem states that a function f is Riemann integrable over A if and
only if the collection of discontinuities of ?A, the extension of f defined by 1)
has measure zero. To prove the theorem, we first give a quantitative measure which

measures how discontinuous a discontinuity of a function can be.

DEFINITION A.74. Let f: R™ — R be a function. For any x € R", the oscillation
of f at x is the quantity

osc(f,x) =inf sup |f(z1) — flx2)].

6>0 z1,x2€D(x,0)

Let h(d; ) denote the quantity of which is taken the infimum; that is,

h(oyz) = sup  [f(z1) = flz2)].

z1,z2€D(z,8)

Then for fixed x € R", h(-;z) is a decreasing function. Therefore, osc(f,z) =

lim h(0; ). We note that h(0;x) can also be expressed as sup f(y) — inf f(y).
0—0 yeD(z,6) yeD(z,0)
The following lemma provides a way to examine whether a point is a discontinuity

of a function or not.

LEMMA A.75. Let f: R™ — R be a function, and xq € R™. Then f is continuous at
xg if and only if osc(f,zq) = 0.

Proof. “=" Let € > 0 be given. Since f is continuous at z,
36> 053 |f(x) — flzo)] < % whenever x € D(zg,9).

In particular, for any x1, x5 € D(xy, ),

[f@n) = flwa)| < [F(21) = Flo)| + |F(0) = fla2)] < %;
thus  sup [f(21) — flz2)| < % which further suggests that

z1,22€D(x0,9)

0 < osc(f,x) < % <e.

Since ¢ is given arbitrarily, osc(f, zg) = 0.
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“<" Let € > 0 be given. By the definition of infimum, there exists ¢ > 0 such that
sup | f(z1) — f(z2)] <e.
xl,IQED($0,6)
In particular,
|f(z) = flzo)] < sup  |f(x1) — flao)| <¢
z1,x2€D(x0,0)

for all z € D(xo,0). o

LEMMA A.76. Let f:R™ — R be a function. Then for all € > 0, the set D, = {x €
R" | osc(f,z) = e} is closed.

Proof. Suppose that {yx};"; € D. and yx — y. Then for any 6 > 0, there exists
N > 0 such that y; € D(y,0) for all £ = N. Since D(y,¢) is open, for each k > N
there exists d; > 0 such that D(yx, dx) S D(y,9); thus we find that

sup  |f(z1) = fla)] < sup  |f(z1) = fas)]  VE=N.

xl,xQED(yk,ék) $1,$2€D(y,5)

The inequality above implies that osc(f,y) = ¢; thus y € D, and D, is closed. a

THEOREM A.77 (Lebesgue). Let A < R™ be bounded, f : A — R be a bounded
function, and f be the extension of f by zero outside A; that is,

T, o f(l’) /fo € A7
Jw) = { 0  otherwise.

Then f is Riemann integrable if and only if the collection of discontinuity of f is a set

of measure zero.

Proof. Let D = {z € R"|osc(f,z) > 0} and D. = {z € R"|osc(f,z) > e}. We
0

remark here that D = J D1
k=1
“=” We show that D1 has measure zero for all k € N (if so, then Theorem

implies that D has measure zero).

Let k € N be fixed, and € > 0 be given. By Riemann’s condition there exists a
partition P of A such that

Z [sup f(z) — inf f(x)]y(A) <

g
Acp - zel reEA k
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Define

—

(1)E{HUEDL‘QJE(?AforsomeAeP},
k k
(

2)

D

D E{xeD%‘xein‘c(A) for some A € P},

1
k

Then D 1= D(1 U D . We note that D () has measure zero since it is contained
& k:

in (Jaep A while each 0A has measure zero. Now we show that D(l) also

k
has measure zero. Let C' = {A € P|int(A) n Dy # @}‘ Then D(12) c JA.
AeC

Moreover, we also note that if A € C, sup flz) — 1nf f(z) = =. In fact, if A e C
there exists y € int(A) N Dy ; thus Choosmg d > O such that D(y, J) € int(A),

?

sup fT(w) - ig£ f(x) = sup ‘J?(%) - f(%)‘ = sup ‘JF(%) - JF(%)‘

TEA T T1,T26A z1,22€D(y,d)

| =

>inf  sup ‘f(xl) - J?(l’z)‘ = osc(f,y) =
0>0 21 ,22eD(y,5)

As a consequence,

LY ua) < Y [sup fla) - inf o) |p(A) = UG P) ~ LA P) <

AeC Aep -~ T€A

which implies that )] v(A) < €. In other words, we establish that D(f) has
AeC k
measure zero. Therefore, D% has measure zero for all k£ € N; thus D has measure

Z€ero.

Let R be a closed rectangle with sides parallel to the coordinate axes and A

19
2 fw + #(R)’ where | f{lo = sup |f(2)].

1. Since D, is a subset of D, Proposition implies that D, has measure
zero; thus Proposition [A.67] provides open rectangles S1, S, - -+ whose sides
are parallel to the coordinate axes such that D < U Sk, and Z v(Sk) < €.

k=

int(R), and € > 0 be given. Define ¢’ =

In addition, we can assume that S, < R for all k € N since D / C R.

2. Since Do € R is bounded, Lemma [A.76] suggests that D,/ is compact; thus

N
D. < |J Sk for some N € N.
k=1

Let [y = Sk, and P be a partition of R satisfying
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(a) For each A € P with An D # &, A <[, for some k=1,---, N.
(b) For each k =1,--- N, [y is the union of rectangles in P.

(¢) Some collection of A € P forms a partition P of A.

Figure A.2: Constructing partitions P and P from finite rectangles Sy, --- , Sy

Rectangles in P fall into two families:

C’lz{AeP|A§Dkforsomek:=1,~~,N},
Co={AeP|A¢Oforallk=1,--- N}.

By the definition of the oscillation function,

Voeé¢ D.,36,>03  sup ‘f(ml)— (x2)|<5’.

z1,22€D(2,04)

Since K = [J A is compact, there exists r > 0 such that for each a € K,
AECQ

D(a,r) < D(y,d,) for some y € K. Let P’ be a refinement of P such that
|P'|| < r. Then if A’ € P’ such that A’ = A for some A € Cy, for some y € K
we have A’ < D(y, ,); thus

supf(x)—xiéqu/f(x) < sup f(y)— inf fly)=  sup |f(m1)—f(x2)‘ <.

zeN! x€D(y,0y) zeD(y,6y) 1,226 D (y,0y)

As a consequence, if P’ = {A’ e P ’ A’ < A for some A € 75}, then P’ is a
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partition of A and

UEP) LGP = (5 4 X ) (sup ) — inf F) (&)
A’AgZch A'AgZZCQ

<2flo Dy v(A) e Y v(A)

Alep! Alep!
AlcAeCy AlCAeCqy

<2flw D, v(A)+ew(R)
AEPAC,
N

<2 fllo Y v(Sk) + +EV(R) < (2]l + V(R))E =¢;

k=1
thus f is Riemann integrable over A by Riemann’s condition. O

EXAMPLE A.78. Let A =Qn[0,1], and f: A — R be the constant function f = 1.
Then i Qn[0.1]

- ifreQnl0,1],

Jx) = { 0 otherwise.
The collection of points of discontinuity of f is [0, 1] which, by Corollary , cannot
be a set of measure zero; thus f is not Riemann integrable.

Another way to see that f is not Riemann integrable is U(f,P) = 1 and L(f,P) =0

for all partitions P of A.

COROLLARY A.79. A bounded set A < R™ has volume if and only if the boundary

of A has measure zero.

Proof. 1. If zq ¢ 0A, then there exists 6 > 0 such that either D(zg,d) < A or
D(x0,6) < A%; thus 1,4 is continuous at zy ¢ 0 A since 14(x) is constant for all
x € D(xg,9).

2. On the other hand, if xy € 0A, then there exists z; € A, y, € A" such that
x) — o and y, — o as k — oo. This implies that 1,4 cannot be continuous at

T since 14(xy,) = 1 while 14(yx) = 0 for all k € N.
As a consequence, the collection of discontinuity of 1, is exactly 0 A, and the corollary

follows from Lebesgue’s theorem. =

COROLLARY A.80. Let A < R" be bounded and have volume. A bounded function
f A — R with a finite or countable number of points of discontinuity is Riemann

integrable.
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Proof. We note that {x e R” ‘ osc(f,x) > O} c ﬁAu{x €A ‘ f is discontinuous at x }

]

REMARK A.81. In addition to the set inclusion listed in the proof of Corollary

we also have
{z e A| f is discontinuous at z } < {z € R"|osc(f,z) > 0}.

Therefore, if A < R" is bounded and has volume, then a bounded function f: A - R
is Riemann integrable if and only if the collection of points of discontinuity of f has

measure zero.

COROLLARY A.82. A bounded function is integrable over a compact set of measure

ZEero.

Proof. 1f f : K — R is bounded, and K is a compact set of measure zero, then the

collection of discontinuities of f is a subset of K. o

COROLLARY A.83. Suppose that A,B < R" are bounded sets with volume, and

f A — R is Riemann integrable over A. Then f is Riemann integrable over A n B.

Proof. By the inclusion

—AnB

{zeint(An B)|osc(f ", x) >0} = {zreR"| osc(f', z) > 0},

we find that

{zeR"| osc(f "7 x) > 0} < 0(An B)u{zeint(An B) |osc(?AﬁB, z) > 0}
CJAuvdBuU {xeR"|osc(7A,:c) >0} .

Since 0 A and ¢ B both have measure zero, the integrability of f over A n B then
follows from the integrability of f over A and the Lebesgue Theorem. o

REMARK A.84. Suppose that A < R" is a bounded set of measure zero. Even if
f A — Ris continuous, f may not be Riemann integrable. For example, the function

f given in Example is not Riemann integrable even though f is continuous on A.

REMARK A.85. When f: A — R is Riemann integrable over A, it is not necessary
that A has volume. For example, the zero function is Riemann integrable over
A =Qn|0,1] even though A does not has volume.
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COROLLARY A.86 (Lebesgue’s Differentiation Theorem (for Riemann integrable
function)). Let A < R" be a bounded, open set such that 0 A has measure zero. Suppose
that f : A — R is a bounded and Riemann integrable function. Then

1

lim J z)dx = f(xg) for almost every x € A. A.15
50 I/(B(CC(),T) ~ A) Blaor)nA f( ) f( 0) f Y ( )

Proof. Let € > 0 be given, and suppose that f is continuous at xy. Then there exists
0 > 0 such that
]f(x)—f(:co)}<% Ve B(zg,d) nA.

Since 0 A has measure zero, by the fact that 0(B(zg,7) n A € 0 B(zg,7) U 0 A we find
that 0(B(zg,7) N A) also has measure zero for all r > 0. In other words, B(xg,r) n A
has volume. Then if 0 < r < 9,
epel!
f(@)dw ~ f(xo)
‘U(B(xlb T) A A) B(zg,r)nA ’
epel!
- f(@) = flwo)) da
‘V(B(Z[‘O’T) M A) B(zo,r)nA ( ’ )
epel!
flx) — f(xo)|dx
V(B(xoﬂ") N A) B(zo,r)nA ’ ( ) ( 0)|
€ 1 J 3
< ldr = - <e¢.
2 V(B(:Cm T) N A) B(zo,r)nA 2
This implies that (A.15)) holds for all 2y at which f is continuous. The theorem then

follows from the Lebesgue theorem. O

A

A.2.3 Properties of the Integrals

PROPOSITION A.87. Let A < R" be bounded, and f,g: A — R be bounded. Then

(a) If B S A, then L (f1g)(z) dz = jB f(z)dz and L (Flp)(x) dz = jB Flz) da.

(f + g)(x) dx < L (f + 9)(x) da <J f@)de +

A

(b) L f(x)de + Lg(g;) dr < L
L g(x)dx.

(c) If c =0, then L (ef)(z)dx = CL f(z)dz and L (ef)(z)dx = CL fx)dx. If

(cf)(z)dx = ch(x) dx and L (cf)(x)dx = CL f(x)dx.

c <0, then J
Ja
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(d) If f < g on A, then J
A

f(x)da:<f

Ag(:v) dx and L flz)dx < Lg(q:) dx.

(e) If A has volume zero, then f is Riemann integrable over A, and f f(x)der = 0.
A

REMARK A.88. Let A € R" be bounded and f,g: A — R be bounded. Then (b)
of Proposition also implies that

_L(f — @) do < f f(@)da — _jAg<x> da

and ) i )
L f(z)dx — JAg(x) dr < L(f — g)(x)dz.

COROLLARY A.89. Let A, B < R" be bounded such that A n B has volume zero,
and f: Au B — R be bounded. Then

f f(a:)d:chf flz)dx < J f(z)dx < J flz)dx < J f(x)dx+f flz)dx.
JA JB JAUB AuB A B
The following theorem is a direct consequence of Proposition [A.87]

THEOREM A.90. Let A < R" be bounded, c € R, and f,g : A — R be Riemann
integrable. Then

1. f =+ g is Riemann integrable, and L (f+g)(x)de = L f(z)dz + JAg(x) dx.
2. c¢f is Riemann integrable, and L (cf)(z)dx = CL f(z)dx.

3. |f| is Riemann integrable, and ‘L f(x) dm‘ < L |f(z)|dx.

4. If f < g, then L flz)dx < Lg(x) dz.

5. If A has volume and |f| < M, then ‘f f(z) dx‘ < Mv(A).
A

THEOREM A.91. Let A < R" be bounded, and f : A — R be a bounded integrable

function.

1. If A has measure zero, then J f(z)dx = 0.
A
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2. If f(x) =20 for all z € A, and J f(z)dz =0, then the set {z € A| f(zx) # 0}
A

has measure zero.

REMARK A.92. Combining Corollary and Theorem [A.91] we conclude that

the integral of a bounded function over a compact set of measure zero is zero.

REMARK A.93. Let A=Qn [0,1] and f: A — R be the constant function f = 1.
We have shown in Example that f is not Riemann integrable. We note that A
has no volume since 0 A = [0, 1] which is not a set of measure zero. However, A has

measure zero since it consists of countable number of points.

1. Since f is continuous on A, the condition that A has volume in Corollary

cannot be removed.

2. Since A has measure zero, the condition that f is Riemann integrable in Theorem
[A.91] cannot be removed.

THEOREM A.94 (Mean Value Theorem for Integrals). Let A be a subset of R™
such that A has volume and is compact and connected. Suppose that f : A — R is

continuous, then there exists xo € A such that
| f@yaz = ey,

e quantity —-— x)dx 15 called the average of f over A.
h V(lA) fla)d lled th £ f over A
A

DEFINITION A.95. Let A € R” be a set and f: A — R be a function. For B € A,
the restriction of f to B is the function f’B : A — R given by f|g = flp. In other

words,
[ f(x) ifzeB,
f‘B<x>_{ 0 ifzeAB.

The following lemma is a direct consequence of Proposition (a).

LEMMA A.96. Let A < R" be bounded, and f : A — R be a bounded function.
Suppose that B < A, and f‘B is Riemann integrable over A. Then f is Riemann

integrable over B, and

Lf\B(x) dz = L Flz)dz .
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THEOREM A.97. Let A, B be bounded subsets of R™ be such that A n B has measure
zero, and f: Au B — R be such that f‘AmB, f‘A
over Au B. Then f is integrable over A u B, and

and f‘B are all Riemann integrable

OB fz)dx = JA f(z)dx + JB fz)dz.

A.2.4 The Fubini Theorem

If f:[a,b] — R is continuous, the fundamental theorem of Calculus can be applied to
computed the integral of f over [a,b]. In the following two sections, we focus on how

the integral of f over A € R", where n > 2, can be computed if the integral exists.

DEFINITION A.98. Let S = A x B be the product of two bounded sets A < R"

and B <€ R™, and f : S — R be bounded. For each fixed x € A, the lower integral

of the function f(z,-) : B — R is denoted by j f(x,y)dy, and the upper integral
JB

of f(x,-) : B — R is denoted by f f(z,y) dy. If for each x € A the upper integral
B

and the lower integral of f(x,-) : B — R are the same, we simply write J f(z,y)dy
B

for the integrals of f(z,-) over [c,d]. The integrals J f(z,y) dx, f f(z,y) dx and
A Ja

J f(x,y) dx are defined in a similar way.
A
Now we state and prove the general Fubini Theorem.

THEOREM A.99 (Fubini’s Theorem). Let A € R" and B < R™ be rectangles, and
f:Ax B — R be bounded. For x € R" and y € R™, write z = (x,y). Then

LxB fz)dz < L (JB f(xv?/)dy>dx < L <L f(%y)dy)dx < LXBf(z) dz
_ - (A.16)

and

LXB f(2)dz < JB (Lf(x,y)d:r>dy < JB (L f(:L‘,y)dx)dy < LXB f(2)dz.
(A.17)
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In particular, if f: A x B — R is Riemann integrable, then

[ s [ ([ sew)i= [ ([ rei)i
— JB (JAf(x,y)dx>dy = L <Lf(x’y)dx>dy'

Proof. 1t suffices to prove (A.16). Let € > 0 be given. Choose a partition P of A x B
such that L(f,P) > f f(z)dz — €. Since P is a partition of A x B, there exist

AxB

partition P, of A andipartition P, of B such that P = {A =RxS | ReP,,Se Py}.
By Proposition [A.87 and Corollary [A.89] we find that

_L (JB f(z,y) dy)dx > R;Dx JR <S;;y _Lf(:v,y) dy)d:;c
5 3 [ (], )i

ReP, SePy =

Z inf  f(z,9)vm(S)vn(R)

ReP,,SePy (@y)eRxS

= 3 it S () = LUP) > [ )z e

A
Acp (@€

A\

\Y

Since € > 0 is given arbitrarily, we conclude that

_LxB J(z)dz < JB <_L f(x,y)da:>dy.

Similarly, J (J f(x,y)dy)dx < j f(2)dz; thus (A.16) is concluded. D
A B AxB

COROLLARY A.100. Let S < R" be a bounded set with volume, p1,ps : S — R be
continuous maps such that ¢1(x) < @o(z) for allz € S, A = {(z,y) e R" x R|z €
S,¢1(x) <y < pa(2)}, and f: A — R be continuous. Then f is Riemann integrable
over A, and

L [z y)d(z,y) = L (fm f(z,y) dy)d:r- (A.18)

v1(z)

Proof. Since d A has measure zero, and f is continuous on A, Corollary [A.80] implies

that f is Riemann integrable over A. Let R be the smallest closed rectangle with sides
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parallel to the coordinate axes and S < R, and m = mlgl ¢1(x) and M = max ©a(x).
Then A € R x [m, M]; thus Theorem and the Fubini Theorem imply that

|t - fo[m’M] Fenden = [ ([ 7w )

Let g(z f f x,y)dy. Then g(x) = 0 if z ¢ S; thus with the help of Lemma

[A.96] the identity above further implies that

[ et = [ stanswae = [ swar= [ ([ Fana)a. ()

Jym

On the other hand, for each fixed z € S, let A, = {y € R ‘ ¢1(2) <y < @a(x)}. Then
F(@y) = fla,9)1a, (y) for all (z,y) € Rx[m, M] or equivalently, " (x,-) = f(x,")|a,
for all z € S; thus Proposition [A.87] (a) implies that
M__ v2()
| Pamd=| swma-| @y vees. a2
Jm x e1(z

Combining (A.19)) and (A.20]), we conclude (|A.18]). o

ExXAMPLE A.101. In this example we compute the volume of the n-dimensional unit
ball w,. By the Fubini theorem,

1 «/1—1% 1—x%—~--—x%_1
“”:f f f de - d, .
-1 —4/1—x% - l—ac%—m—xfhl
1 3:1 1 xl—---—x271 el
Note that the integral f : f dx, - --dryisin fact w, ;(1—2%) "2 ;

_ 2.2
1 xl 1—x7] Ty _q

thus

jus

1 2
Wy = J wWp—1(1 — :pz)nT_ldx = an_lj cos™ 0d6 . (A.21)
-1 0

Integrating by parts,
JQ cos" 0df = JQ cos" ' 0 d(sin ) = cos™” 1(981110‘ Py (n—1) JQ cos" 20 sin® 0 df
0 0 0

Jus

=(n-1) JQ cos" 2 6(1 — cos® 0) df)

0
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which implies that

bl —1 (2
J cos" B df = J cos" % 0db.
0 0
As a consequence,
. (n *(711)(_”2; 3) 3 2 f cosfdf  if nis odd,
J cos" 0 df =
0 (n—l J do if n is even ;
n(n — 2)
thus the recursive formula (A.21)) implies that w,, = 2W"727r. Further computations
n
shows that )
(2n)" 7 e
n(n—2)---3w1 if n is odd,
wn = n—2
(2m) 2 e
— (W if n is even.
nin—2)---4

0

Let I' be the Gamma function defined by I'(t) = j z'"le ®dx for t > 0. Then
0

I'(z+1) =al'(z) for all 2 > 0, I'(1) = 1 and F(%) = /m. By the fact that wy = 2

and Wo = T, WE Can exXpress wy, as

0|3

™

NG

Wnp =

+

2)'

A.2.5 Change of Variables Formula

M|

The Fubini theorem can be used to find the integral of a (Riemann integrable) function
over a rectangular domain if the iterated integrals can be evaluated; however, like the
integral of a function of one variable, in many cases we need to make use of several
changes of variables in order to transform the integral to another integral that can
be easily evaluated. In this section, we state the change of variables formula for the

integral of functions of several variables.

THEOREM A.102 (Change of Variables Formula). Let U < R" be an open bounded set,
and g : U — R™ be an one-to-one €' mapping with €1 inverse; that is, g~* : gU) — U
is also continuously differentiable. Assume that the Jacobian of g, J, = det([Dyg]),

does not vanish in U, and EccU has volume. Then g(E) has volume. Moreover, if
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f:9(E) — R is bounded and integrable, then (f o g)J, is integrable over E, and

f fly)dy = f (f 2 9)(@)| Ty ()| dv = L(f Og)(x)‘M

REMARK A.103. The condition that g has to be defined on a larger open set U can
be relaxed using the Monotone Convergence Theorem. See Theorem [A.176| (another

change of variables formula for more general situations) for the precise statement.

dx .

A.3 Uniform Convergence and the Space of Contin-
uous Functions

A.3.1 Pointwise and Uniform Convergence

DEFINITION A.104. Let (M,d) and (N, p) be two metric spaces, A = M be a set,
and fi, f : A — N be functions for k = 1,2, ---. The sequence of function {f};2, is

said to converge pointwise to f if

kli_{&p(fk(a),f(a)) =0 Vace A.

We often write fr — f p.w. if fp converges pointwise to f.
Let B < A be a subset. The sequence of functions {fi}{_, is said to converge

uniformly to f on B (or {fi}y, converges to f uniformly on B) if
limm sup p( i), f(2)) = 0.
—% xeB

In other words, {fx}, converges uniformly to f on B if for every ¢ > 0, 3N > 0
such that
P(fk($),f($))<€ Vk> N and x € B.

PROPOSITION A.105. Let (M,d) and (N, p) be two metric spaces, A < M be a set,
and fi, f+ A— N be functions for k =1,2,---. If { fu}}_, converges uniformly to f

on A, then {fi};, converges pointwise to f.

PROPOSITION A.106 (Cauchy criterion for uniform convergence). Let (M,d) and
(N, p) be two metric spaces, A = M be a set, and fr : A — N be a sequence of
functions. Suppose that (N, p) is complete. Then {fi}r_, converges uniformly on
B < A if and only if for every e > 0, 3N > 0 such that

p(fe(@), fo(z)) <& Vk, (>N andx € B.
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THEOREM A.107. Let (M,d) and (N, p) be two metric spaces, A < M be a set, and
fr : A — N be a sequence of continuous functions converging to f : A — N uniformly
on A. Then f is continuous on A; that is,

lim f(z) = lim lim fi(x) = lim lim fi(x) = f(a).

T—a r—a k—o0 k—ow z—a

REMARK A.108. The uniform limit of sequence of continuous function might not

be uniformly continuous. For example, let A = (0,1) and fi(z) = % for all k € N.

. 1 .. .. .
Then { fx}_; converges uniformly to f(x) = —, but the limit function is not uniformly
X

continuous on A.

THEOREM A.109. Let I < R be a finite interval, f, : I — R be a sequence of
differentiable functions, and g : I — R be a function. Suppose that {fk(a)}zo:l

converges for some a € I, and {f,}}, converges uniformly to g on I. Then

L. {fe}, converges uniformly to some function f on I.

2. The limit function f is differentiable on I, and f'(x) = g(x) for all x € I; that

is,
lim f{(@) = lim  fu(@) = = lim fula) = f'(@).

k—o0 k—oo dx dx k—

THEOREM A.110. Let fy : [a,b] — R be a sequence of Riemann integrable functions

which converges uniformly to f on [a,b]. Then f is Riemann integrable, and

k—o0

lim f b fulz)dz = f b lim fi(x)dz = f b flw)dz . (A.22)

THEOREM A.111 (Dini’s Theorem). Let K be a compact set, and f;, : K — R be
continuous for all k € N such that { fi.}{_, converges pointwise to a continuous function
f: K — R. Suppose that fr < frr1 for all k € N. Then {fi}y_, converges uniformly
to f on K.

A.3.2 The Space of Continuous Functions

DEFINITION A.112. Let (M,d) be a metric space, (V,| - |) be a normed vector
space, and A € M be a subset. We define € (A;V) as the collection of all continuous

functions on A with value in V; that is,

¢ (A;V) ={f:A— V]| is continuous on A}.
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Let €,(A; V) be the subspace of €' (A;V) which consists of all bounded continuous

functions on A; that is,
G (A; V) = {f € €(A; V)| f is bounded} .
Every f € €,(A;V) is associated with a non-negative real number | f|, given by

Il = sup {1£ ()| | & A4} = sup | £@)]

The number | f| is called the sup-norm of f.

PROPOSITION A.113. Let (M,d) be a metric space, (V,| - |) be a normed vector
space, A < M be a subset.

1. €(A;V) and 6,(A; V) are vector spaces.
2. (G4(A; V), | - ) is a normed vector space.
3. If K < M is compact, then € (K;V) = (K, V).

REMARK A.114. In general | - |, is not a “norm” on %€ (A;V). For example, the

function f(z) = = belongs to €((0,1);R) and | f|, = o. Note that to be a norm
T

|/l has to take values in R, and oo ¢ R.

PROPOSITION A.115. Let (M,d) be a metric space, (V,| -|) be a normed vector
space, A < M be a subset, and f, f € €,(A; V) for all k € N. Then {fi}{, converges
uniformly to f on A if and only if {fi}7, converges to f in (€,(A;V),] o).

THEOREM A.116. Let (M,d) be a metric space, (V,| -|) be a normed vector space,
and A = M be a subset. If (V, |- |) is complete, so is (€,(A; V), ] - |w)-

DEFINITION A.117. A Banach space is a complete normed vector space.

A.3.3 The Arzela-Ascoli Theorem

In Dini’s theorem, we prove that in the space of continuous functions, under the addi-
tional assumption that the pointwise convergence is monotone, pointwise convergence
is uniform convergence. On the other hand, in general pointwise convergent sequences

of functions do not converge monotonically so monotone convergence is not a good



232 CHAPTER [Al REVIEW OF ELEMENTARY ANALYSIS

criteria for uniform convergence. In this section, we investigate the difference between
pointwise convergence and uniform convergence. To be more precise, we are looking

for a condition such that

A pointwise convergence sequence of continuous functions satisfies

this condition if and only if this sequence converges uniformly.

This condition differentiates the pointwise convergence and the uniform convergence of
sequences of continuous functions, and will play an important role for judging whether

a subset of the space of continuous functions are compact or not.

Equi-continuous family of functions

The first part of this section is devoted to the investigation of the difference between
the pointwise convergence and the uniform convergence of sequence of continuous

functions.

DEFINITION A.118. Let (M, d) be a metric space, (V, | -|) be a normed vector space,
and A € M be a subset. A subset B < %,(A;V) is said to be equi-continuous if

Ve>0,30>0 3| f(z1)—f(xe)| <& whenever d(z1,z3) <, 1,20 € A, and f € B.

REMARK A.119. 1. If B € %,(A;V) is equi-continuous, and C is a subset of B,

then C' is also equi-continuous.
2. In an equi-continuous set of functions B, every f € B is uniformly continuous.

LEMMA A.120. Let (M,d) be a metric space, (V,| - |) be a normed vector space,
and K < M be a compact subset. If B < € (K;V) is pre-compact, then B is equi-

continuous.

Proof. Suppose the contrary that B is not equi-continuous. Then 3¢ > 0 such that

1
VkeN,Jay, yp € K and fr € B 3 d(xy, yx) < T but || fu(we) — fe(ye)] = €.

Since B is pre-compact in (¢(K;V),| - |) and K is compact in (M, d), there exists

a subsequence {fy, } . and {zy, }72, such that { fx, }30:1 converges uniformly to some

o0
Jj=1
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function f € (€(K;V), | - ) and {a),}72, converges to some a € K. We must also

have {yx,}72, converges to a since d(zy,,yr;) < e
J

Since f is continuous at a,
36> 0 3 |f(z) - fla)] < % if 2 € D(a,8) N K.

Moreover, since { Tx; }jil converges to f uniformly on K and zy,,yx, — a as j — o,
3N > 0 such that

fiy@) = f@] <7 ifj>Nandoek
and
d(xy;,a) <6 and  d(yr;,a) <6 if j = N.

As a consequence, for all j > N,

e < | fiy (@;) = Sy iy | < | Sy (y) = f o)) | + (1 f () — F(a)
4e

1) = F@] + 1) = Fi ) <

which is a contradiction. o

Alternative proof of Lemma[A.120] Suppose the contrary that B is not equi-continuous.
Then 3¢ > 0 such that

1
VkeN,Jay, yp € K and fr € B 3 d(xy, yix) < z but | fi(zr) — felye)| = €.

Since B is pre-compact in (€' (K;V),| - |«), there exists a subsequence {fy, };il
converges to some function f in (€ (K;V),|| - |»). By Proposition |A.115] {fkj};o:l

converges uniformly to f on K; thus there exists N; > 0 such that

£ @) = f@)| <5 Viz>NandzekK.
Since f € € (K;V) and K is compact, f is uniformly continuous on K; thus
35> 03 |f(z) — f(y)] < Z if d(z,y) < and z,y € K .
For one of such a ¢, there exists Ny > 0 such that

d(xk,yk) <0 VkBNQ
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Therefore, d(xy,;,yr;) < 6 if j = Ny (this is because k; > j for all j € N); thus for all
j = max{Ny, No},

€< |’fkj<xkj) - fk](ykj>H
3e

< s (@) = )]+ 1 ag) = F Qo) |+ 1 () = F ()| <

which is a contradiction. o

COROLLARY A.121. Let (M,d) be a metric space, (V,|-||) be a normed vector space,
and K € M be a compact subset. If {fr}7_, converges uniformly on K, then {fi}r_,

1S equi-continuous.

Corollary shows that if {fy};>, converges uniformly on a compact set K,
then {f};°; must be equi-continuous. The inverse statement, on the other hand,
cannot be true. For example, taking {fx}{_; to be a sequence of constant functions
fr(z) = k. Then {fi};~, obviously does not converge, not even any subsequence.
Therefore, we would like to study under what additional conditions, equi-continuity
of a sequence of functions (defined on a compact set K) indeed converges uniformly.

The following lemma is an answer to the question.

LEMMA A.122. Let (M,d) be a metric space, (V, | -||) be a Banach space, K < M
be a compact set, and {fr}i2, € € (K;V) be a sequence of equi-continuous functions.
If {fi}72, converges pointwise on a dense subset E of K (that is, E < K < cl(E)),

then {fi}i, converges uniformly on K.
Proof. Let € > 0 be given. By the equi-continuity of {f;}r;,
30 >0 3| felz) — fuly)| < g if d(z,y) <6, z,ye K and ke N.

Since K is compact, K is totally bounded; thus

" 5
j=1

By the denseness of E in K, for each j = 1,--- ,m, 3z; € E such that d(z;,y,) < g

Moreover, D(yj;, g) C D(zj,0); thus K < .UlD(Zj’ 9). Since {fi}7, converges
J=

pointwise on E, {fi(2;)}r., converges as k — oo for all j = 1,--- ,m. Therefore,

g
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Let N = max{Ny,---, Ny}, then
£ .
Ifelz)) = felzi)l <5 Yk E>Nandj=1,-,m.

Now we are in the position of concluding the lemma. If 2 € K, there exists z; € F
such that d(z, z;) < J; thus if we further assume that k,¢ > N,

[ (@) = fe(@) | < () = Sl + 1fe(z) = Fe(zp)| + [ fe(z5) = fe(@)] < €.

By Proposition |A.106} {f;}5, converges uniformly on K. o

REMARK A.123. Corollary and Lemma suggest that “a sequence
{fi}e, € € (K;V) converges uniformly on K if and only if {f;};2; is equi-continuous

and pointwise convergent (on a dense subset of K)”.

Compact sets in ¢ (K;V)

The next subject in this section is to obtain a (useful) criterion of determining the
compactness (or pre-compactness) of a subset B € € (K;V) which guarantees the
existence of a convergent subsequence {fy,}._, of a given sequence {f;}"; < B in

(CEV) - o).

[oe]
7j=1

LEMMA A.124 (Cantor’s Diagonal Process). Let E be a countable set, (V,| -||) be
a Banach space, and f, : E — V be a sequence of functions. Suppose that for each
reE, {fk(a:)}zozl is pre-compact in V. Then there exists a subsequence of { fr},

that converges pointwise on E.
Proof. Since E is countable, E = {z,}72.

1. Since {fk(xl)}zo:l is pre-compact in (V, |- ), there exists a subsequence { fi, }jozl
such that {fk](xl)}jil converges in (V, | - ).

2. Since {fk(xg)}zozl is pre-compact in (V,| - [), the sequence {fj, (m)}jil -
{ fk(xQ)}ZO:l has a convergent subsequence { s, (l’g)}zil
Continuing this process, we obtain a sequence of sequences S;, S, - -+ such that

1. Sy consists of a subsequence of { fi}{_; which converges at z, and

2. Sk =2 Sk+1 for all £ € N.
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Let gr be the k-th element of Si. Then the sequence {gx};~, is a subsequence of

{fr}r, and {gr};>, converges at each point of E. al

The condition that “{ fk(:r)}zozl is pre-compact in V for each z € E” in Lemma
motivates the following

DEFINITION A.125. Let (M,d) be a metric space, (V,| - |) be a normed vector
space, and A € M be a subset. A subset B € %,(A;V) is said to be pointwise

compact compact

pre-compact if the set B, = {f(z)|f € B} is pre-compact in (V,]| - |) for all
bounded bounded

re A

Now, we consider compact sets in € (K;V). Let B <€ €(K;V) be a compact

set. Given a sequence {fi};~; < B, we would like to know if it is possible to find a
subsequence { Tr; }jil which converges in sup-norm. If there is a dense subset E of K
such that {fi}7, {fx}, is pointwise pre-compact, by the Diagonal Process (Lemma
0
j=

A.124) we can find a pointwise convergent subsequence { fkj} - With the help of

Lemma [A.122] we immediately know that by imposing the equi-continuity condition,
pointwise convergence implies uniform convergence. Therefore, naturally we require
that B satisfies pointwise pre-compactness and equi-continuous to guarantee that B
is a compact set of € (K; V).

The existence of a dense subset of a compact set K is guaranteed by the following

LEMMA A.126. A compact set K in a metric space (M, d) is separable; that is, there
exists a countable subset E of K such that cl(E) = K.

THEOREM A.127. Let (M,d) be a metric space, (V,|-|) be a Banach space, K < M
be a compact set, and B < € (K;V) be equi-continuous and pointwise pre-compact.
Then B is pre-compact in (‘K(K; V), |l - Hoo)

Proof. We show that every sequence { fi}7~; in B has a convergent subsequence. Since
K is compact, there is a countable dense subset E of K (Lemma |[A.126]), and the

diagonal process (Lemma |A.124)) suggests that there exists { Jx; };il that converges
pointwise on E. Since E is dense in K, by Lemma |A.122 { Jr; }311 converges uniformly

on K; thus { fi, };O:l converges in (¢(K;V), |- |l) by Proposition |A.115] o
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REMARK A.128. Lemma|A.120/and Theorem |A.127|suggest that “a set B < € (K; V)
is pre-compact if and only if B is equi-continuous and pointwise pre-compact”. (That

B is pre-compact implies that B is pointwise pre-compact is left as an exercise).

COROLLARY A.129. Let (M,d) be a metric space, and K < M be a compact set.
Assume that B < € (K;R) is equi-continuous and pointwise bounded on K. Then

every sequence in B has a uniformly convergent subsequence.

Proof. By the Bolzano-Weierstrass theorem the boundedness of { fk(x)}lil suggests
that { fk(:p)}zozl is pre-compact for all x € E. Therefore, we can apply Theorem [A.127
under the setting (V, | - |) = (R, |- ]) to conclude the corollary. o

The following theorem is the fundamental result on compact sets in € (K; V).

THEOREM A.130 (The Arzela-Ascoli Theorem). Let (M, d) be a metric space, (V, |-])
be a Banach space, K € M be a compact set, and B < € (K;V). Then B is compact

m (‘K(K; V), |l ||oo) if and only if B is closed, equi-continuous, and pointwise compact.
Proof. “<" This direction is conclude by Theorem and the fact that B is closed.

“=” By Lemma[A.120] it suffices to shows that B is pointwise compact. Let € K and
{ fk(x)}zozl be a sequence in B,. Since B is compact, there exists a subsequence
{ Ir; }?;1 that converges uniformly to some function f € B. In particular,
{ fx, (:c)}jil converges to f(x) € B,. In other words, we find a subsequence
{fx, (x)}jil of {fk(:v)}zozl that converges to a point in B,. This implies that B,
is sequentially compact; thus B, is compact. O

A.3.4 The Contraction Mapping Principle and its Applica-
tions

DEFINITION A.131. Let (M,d) be a metric space, and ® : M — M be a mapping.

® is said to be a contraction mapping if there exists a constant k € [0, 1) such that
d(®(x),(y)) < kd(w,y)  Vaye M.

DEFINITION A.132. Let (M,d) be a metric space, and ® : M — M be a mapping.
A point g € M is called a fized-point for & if &(xg) = xo.
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THEOREM A.133 (Contraction Mapping Principle). Let (M,d) be a complete metric
space, and ® : M — M be a contraction mapping. Then ® has a unique fixed-point.

Proof. Let xy € M, and define z, 1 = ®(z,) for all n € N u {0}. Then
d(l‘n-‘rl»xn) = d(CI)(ZEn), Cb(l'n—l)) < kd(l'N7xn—l) < knd(xlny) )
thus if n > m,

d(l’n, xm) < d(.Tm, xm-‘rl) + d(ilfm+1, xm-i—?) + -+ d(lEn_l, xn)

< 7+ B e+ ()
km

< km<1 +k+ kQ + - )d(l’l, I’Q) = md(l’l, .I'o) . (A23)
Since k € [0,1), lim Ld(xl,xo) = 0; thus
m—o 1 —k

Ve>0,3N >03d(zp,xm) <e VYn,m=N.

In other words, {z,}>_, is a Cauchy sequence. Since (M,d) is complete, z,, — x as
n — oo for some x € M. Finally, since ®(x,) = x,,; for all n € N, by the continuity
of ® we obtain that

O(z) = 7}1_1}30 O(z,) = 7}1_1}30 Tpy1 =T

which guarantees the existence of a fixed-point.

Suppose that for some =,y € M, ®(z) = x and ®(y) = y. Then

d(z,y) = d(®(z), ®(y)) < kd(z,y)
which suggests that d(z,y) = 0 or x = y. Therefore, the fixed-point of ® is unique. o

REMARK A.134. The proof of the contraction mapping principle also suggests an
iterative way, xpy1 = ®(zy), of finding the fixed-point of a contraction mapping ®.
Using (A.23]), the convergence rate of {z,,}_; to the fixed-point = is measured by
km
d(p, x) = lim d(zy,, r,) < —d(x1, 0) .
n—>a0 1—k

Therefore, the smaller the contraction constant k, the faster the convergence.
REMARK A.135. Theorem sometimes is also called the Banach fized-point

theorem.



§/A..3] Uniform Convergence and the Space of Continuous Functions 239

The existence and uniqueness of the solution to ODEs

In this sub-section we are concerned with if there is a solution to the initial value

problem of ordinary differential equation:

a'(t) = f(z(t),t)  Vte [to,to+ At], (A.24a)
{E(to) = Xo, (A24b)

where x : [tg, to+ At] — R™ and f : R" x [to, to+ At] — R™ are vector-valued functions,
and xg € R" is a vector. Another question we would like to answer is “if (A.24)) indeed

has a solution, is the solution unique?”

THEOREM A.136 (Fundamental Theorem of ODE). Suppose that for some r > 0,
f: D(xg,r) x [to, T] — R™ is continuous and is Lipschitz in the spatial variable; that

is,
1K >0 3 Hf(mat) - f(y7t)H2 < [(”3j - yH2 Va:,y € D(.To,T') and t € [t(]?T] :
Then there exists 0 < At < T — to such that there exists a unique solution to (A.24]).

Proof. For any x € € ([to, T']; R™), define

O(x)(t) = zo —i—f f(z(s),s)ds.

to

We note that if x(t) is a solution to (A.24)), then z is a fixed point of ® (for ¢ €
[to, to + At]). Therefore, the problem of finding a solution to transforms to a
problem of finding a fixed-point of ®.

To guarantee the existence of a unique fixed-point, we appeal to the contraction
mapping principle. To be able to apply the contraction mapping principle, we need to

specify the metric space (M, d). Let

T 1
At:min{T—t, —} A25
" K+ 2 f (w0, 2K (4.25)

and define
M = {x e ¢ ([to, to + At]; R")

,
o = @0l < 5}

with the metric induced by the sup-norm || - || of € ([to, to + At]; R™). Then
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1. We first show that ® : M — M. To see this, we observe that
| (x) — o,
t
= ‘ J f(x(s),s)ds” = ‘
to 0

to+At to+At
< Jt | f(z(s), s) = flzo,5)|,ds + Jt | f (o, 5)| ,ds

0

Lt) [f(x(s),s) — f(xo,s)]ds + LZ f(xo,s)dsHOO

to+At
< KJ |z(s) — zo|2ds + AtHf(:z:o, )HOO
to

< At[KHx — o0 + | f (2o, )Hoo] ;

thus if x € M, (A.25) implies that |®(z) — zo/e <

|3

2. Next we show that & is a contraction mapping. To see this, we compute
|®(z) — ®(y)|, for z,y € M and find that

o)~ 0001, < | [ [1a09.9) - 1009, 9]

to+At 1
<J Klz(s) = y(s)l2ds < KAtz = ylo < Sz = ylloo

to

thus ® : M — M is a contraction mapping.

3. Finally we show that (M, d) is complete. It suffices to show that M is a closed
subset of €' ([to, to + At]; R™). Let {zx}{_; be a uniformly convergent sequence
with limit z. Since |zg(t) — xol2 < g for all ¢ € [to, to + At], passing k to the
limit we find that |z(t) — xoll2 < % for all t € [to, g + At] which implies that

|z — zo)oo < g; thus x € M.

Therefore, by the contraction mapping principle, there exists a unique fixed point

x € M which suggests that there exists a unique solution to (A.24]). =

REMARK A.137. In the iterative process above of solving ODE, the iterative relation
t
s (t) = w0+ [ f(an(s),s)ds

to

is called the Picard iteration.
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A.4 The Inverse Function Theorem

The inverse function theorem is the primary tool to determine if a function has
an inverse. In general, as long as a function is not injective, we cannot define its
inverse. For example, the trigonometric functions y = sinx, y = cosz and y = tanx
are periodic, so “global” inverse functions do not exist. However, we also know
that there are inverse functions of those functions such as y = sin”'z = arcsinz,

Y2 = arctanz and y = tan~'2 = arctanz. The existence of such inverse

Yy = Cos
functions is due to the fact that we restrict the domain of the original trigonometric
functions so that they becomes one-to-one on those domains (so that their inverse
exist).

To know what condition might guarantee the existence of an inverse function in
a sufficiently small region, we first look at the case of functions of a single variable.
For the inverse function theorem for functions of a single variable to hold, we require
that the derivative does not vanish. We conjecture that the non-vanishing derivative
condition corresponds to the condition of the invertibility of the bounded linear map
(Df)(x).

Suppose that f € €”’, then Theorem shows that if (Df)(xg) is invertible,
then in a neighborhood of o (Df) is also invertible. Therefore, the following inverse

function theorem uses only the condition that (D f) is invertible at one point.

THEOREM A.138 (Inverse Function Theorem). Let D < R"™ be open, zy € D,
f:D — R" be of class €, and (Df)(zo) be invertible. Then there exist an open
neighborhood U of xy and an open neighborhood V of f(xo) such that

1. f:U — YV s one-to-one and onto;

2. The inverse function f=1:V — U is of class €*;

1

3. Ifw = f~(y), then (Df)(y) = (Df)(x))
4. If f is of class €" for somer > 1, sois f~L.

REMARK A.139. Since f~! : V — U is continuous, for any open subset W of U
fOV) = (7)1 (W) is open relative to V, or f(W) = O n V for some open set

O < R". In other words, if U is an open neighborhood of zy given by the inverse
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function theorem, then f(W) is also open for all open subsets W of U. We call this

property as f is a local open mapping at x,.

REMARK A.140. Since (Df)(zg) € B(R",R"), the condition that (Df)(xg) is in-
vertible can be replaced by that the determinant of the Jacobian matrix of f at zg is

not zero; that is,
det ([(Df)(x0)]) # 0.

The determinant of the Jacobian matrix of f at xq is called the Jacobian of f at x.
a(flf" 7f7l)

01,y wn)
COROLLARY A.141. Let U < R™ be open, f:U — R™ be of class €', and (D f)(z)
be invertible for all x € U. Then f(W) is open for every open set W < U.

The Jacobian of f at x is sometimes denoted by J;(x) or

Having established the local version of inverse function theorem for functions of
several variables (Theorem [A.138)), next we focus on the existence of a global inverse
function. Based on the inverse function theorem for functions of a single variable,
we might conjecture again that the invertibility of (D f)(x) for all x guarantees the
existence of a global inverse function. The example below provides a counter-example;
in particlar, the condition that (D f) is invertible everywhere does not guarantee the

injectivity of functions.

EXAMPLE A.142. Let f: R?> — R? be given by

f(z,y) = (e" cosy, e”siny).

Then
[(Df)(z,y)] = [

e*cosy —e’siny
e*siny e*cosy '

It is easy to see that the Jacobian of f at any point is not zero (thus (Df)(z) is
invertible for all z € R?). On the other hand, f is not globally one-to-one since

f(x,y) = f(z,y + 2m), and hence cannot have a global inverse.

THEOREM A.143 (Global Inverse Function). Let D < R"™ be open, f : D — R™ be
of class €, and (D f)(x) be invertible for all x € K. Suppose that K is a connected

compact subset of D, and f : 0 K — R"™ is one-to-one. Then f : K — R" is one-to-one.
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Proof. Define E = {x e K ‘ Jye K,y #x 3 f(x) = f(y)} Our goal is to show that
EF=g.

Claim 1: FE is closed.

Proof of claim 1: Suppose the contrary that E is not closed. Then there exists
{zp}2, € E, 2, > x as k — oo but x € K\FE. Since z; € E, by the definition of E
there exists y;, € E such that y, # x, and f(xx) = f(yx). By the compactness of K,

09]

there exists a convergent subsequence {yy, }.  of {y;};2, with limit y € K. Since

v ¢ Eand f(xr,) = f(y,) — f(y) as j — oo], vlve must have x = y; thus g, — x as
j — 0.

Since (D f)(x) is invertible, by the inverse function theorem there exists § > 0 such
that f: D(z,0) — R"™ is one-to-one. By the convergence of sequences {a:kj}oo and

j=1
{ykj }j,il, there exists N > 0 such that
ijayk]-ED(fa(;) VJZN

This implies that f : D(x,§) — R™ cannot be one-to-one (since Ty, # Yr, but
f (xkj) =f (ykj)), a contradiction. Therefore, E is closed.

Claim 2: F is open relative to K; that is, for every x € F, there exists an open set U
such that ref and U n K < E.

Proof of claim 2: Let x1 € E. Then there is x5 € E, x5 # x1, such that f(z;) = f(z2).
Since (Df)(z1) and (Df)(z2) are invertible, by the inverse function theorem there
exist open neighborhoods U; of x; and U; of x5, as well as open neighborhoods Vy,
Vs, of f(xy), such that f : U — V; and f : Uy — V, are both one-to-one and onto.
Since x1 # 2, W.L.O.G. we can assume that U; n Uy = . Since Vi n Vs is open,
the continuity of f implies that f~1(V; N V,) = O n D for some open set O; thus

fUinOn K->V nVyn f(K) is one-to-one and onto,
f:UsnONnK—VnVyn f(K) is one-to-one and onto .

Let U = U; n O. Then every z € U n K corresponds to a unique T € Uy n O n K
such that f(z) = f(T). Since Uy nUs = ¢, we must have x # Z. Therefore, z € E, or
equivalently, U n K € F.

Now we show that F = (. Since K is connected, F is open relative to K and F
is closed, E = K or F = . Suppose the case that £ = K. Let 1t € 0 K < E. Then
there exists y € F such that y # x and f(z) = f(y). Since f : 0 K — R" is one-to-one,
y ¢ 0K. Therefore, we have shown that if £ = K, then f(0K) < f(int(K)).
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Since K is compact and f is continuous, f(K) is compact; thus there is b € R"
such that b ¢ f(K). Consider the function ¢ : K — R defined by

Then ¢ is a continuous function on K’; thus ¢ attains its maximum at xq € K. Since
f(0K) < f(int(K)), we can assume that z € int(K); thus (Dg)(zg) = 0. As a

consequence,

[\')IH

plx) = 5]F(x) ~ blR =

[(Df)(@0)]" [f(z0) = b] = 0.

By the choice of b, f(xg) — b # 0; thus we must have that (Df)(xo) is not invertible,

a contradiction. o

The following corollary can be obtained by the extension argument and applying

the global inverse function theorem.

COROLLARY A.144. Let Q € R" be a connected H**-domain for some k > g, and
f:Q— R be an H " -map such that det(V f) > 0 in Q. If f: 0Q — R" is injective,

then f : Q — R"™ is one-to-one.

A.5 The Monotone and Bounded Convergence The-
orems

Now we turn our attention to the validity of if {fi}?, converges pointwise
to f. When the uniform convergence is removed from the assumptions, the limit
function f may not be Riemann integrable. Moreover, even if the limit function f
is Riemann integrable, there are counter-examples for the validity of (A.22). In this
section, we provide two theorems in which the conditions of the uniform convergence
of the sequence of functions is replaced by some other condition to guarantee the
convergence of the integrals to the integral of the limit function.

We begin with the following lemma, which focuses on the approximation of a

non-negative bounded function by continuous functions in a certain sense.

LEMMA A.145. Let f : [a,b] — R be a non-negative bounded function. Then for

each € > 0, there exist continuous non-negative functions g, h : [a,b] — R such that
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0<g,h<f and

ff dx<J g(x)dz +e  and f:f(x)dx>fh(x)dx—e.

Proof. We only prove the case for the lower integral.

Let € > 0 be given, and P = {a =X < T < < Ty < Ty = b} be a partition
of [a,b] such that L(f,P) Jf x)dr — % Let s(z) be the (non-negative) step

function given by

n—1
s(z) = inf )l —1200(x) +  inf 1 p(z
(z) ];xemm]f( Nz—1,2) (T) e 1.01(7)
which is a linear combination of characteristic functions. Then
b b
J (@) do < f sa)dr + (A.26)

since the integral of s over [a,b] is exactly the lower sum L(f,P). On the other hand,
for such a simple function s we can always find non-negative continuous function

g : |a,b] — R (for example, g can be a trapezoidal function) such that g < s and

f: s(z) dz < ng(x) dz + g . (A.27)
jé S

Figure A.3: One way of constructing ¢ given simple function s

The combination of (A.26) and (A.27)) then concludes the lemma. o

The Dini Theorem (Theorem suggests that the monotone pointwise con-
vergence of sequence of continuous functions to continuous functions on a compact
set is in fact uniform. Therefore, the monotone pointwise convergence of a sequence
of functions seems to possess better convergence behavior. In fact, in terms of the

convergence of the integrals this is almost the case, and we have the following
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THEOREM A.146. Let {fi};_, be a decreasing sequence of bounded functions on
[a,b]; that is, fr, = fre1 for all k e N. If klim fi(x) =0 for all x € [a,b], then
—00

b b
lim f fr(xz)dzr =0 <= f lim fi(z) dx) .
k—o0 Ja Ja k—0o0
Proof. Let € > 0 be given. By Lemma [A.145] for each k € N there exists a continuous
function gy, : [a,b] — R such that 0 < g < f; and

b b
€
f fr(x)de < J gr(x) dx + SR (A.28)
Define hy = min{gy, -+, gx}. Then hy is continuous on [a,b], hy = hg,1, and 0 <

hi, < gx < fi for all k € N. Since {fr};2, converges pointwise to the zero function,
I}er;o hi(z) = 0 for all = € [a, b]; thus the Dini theorem implies that {h;}7_, converges
uniformly to the zero function on [a, b]. Therefore, by Theorem there exists
N > 0 such that

b
Jhk(x)dx<z Vk=N. (A.29)

a

On the other hand, for 1 < ¢ < k, max{gy, -+ ,gx} < max{fs, -, fx} = fo; thus

Jb (max{ge, -, g} — g¢) do < J

a a

b b

fo(x) dx — f ge(x) dr < % )

J a
Moreover, for each 1 < j < k,
k—1

0<gr=g;+(gp—9g;) < 9j+(max{gj, e 79k}_9j> < 9j+2 (maX{ge, e ,ka}—gz) ;
=1

so for x € [a,b] and k € N, choosing 1 < j < k such that hy(z) = g;(z), the inequality

above implies that

0 < gi(z) < hy(z) + 2 (max{ge, -, gr}(x) — ge(z)) Ve la,b].

As a consequence,

b b k—1 b
€ €
“ a (=1 a

thus (A.28)) and (A.29)) imply that

b
Oéffk(x)dx<€ Vk>=N. o
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COROLLARY A.147 (Monotone Convergence Theorem). Let fi : [a,b] — R be a
sequence of Riemann integrable functions such that {fx}{_, converges pointwise to a

Riemann integrable function f on |a,b]. Suppose that fi, < fri1 for all k € N. Then

b b
Lf(:v)dxzkh_)noloL fr(x)de.

Proof. Let gx = f — fr. Then {gr}72, is a decreasing sequence of bounded functions

on [a,b] and klim gr(x) = 0 for all z € [a,b]. Therefore, the integrability of f, and f,
—00

as well as Theorem [A.T46] imply that

b b b
0= Jim | outo)de = Jim | (= ) do = Jim j (f = fi)(@)de
b b
_ f fla)dr = lim | fi(x)de. o

COROLLARY A.148 (Arzela’s Bounded Convergence Theorem). Let f : [a,b] — R
be a sequence of Riemann integrable functions such that { fy}5_, converges pointwise to

a Riemann integrable function f on [a,b]. Suppose that there exists a constant M > 0
such that | fx(z)| < M for all € [a,b] and k € N. Then

b b
Lf(x)dmzkh_)noloL fr(z)dx.

Proof. Let € > 0 be given. Define g, (z) = sup|fi(x) — f(z)|. Then {g,}r_, is a
k=n

decreasing sequence of bounded functions on [a,b] and lim g,(x) = 0 for all x € [a, b].
n—o0

Therefore, Theorem [A.146] implies that there exists N > 0 such that

b
Jgn(:p)dz<s Vn=>=N.

a

Moreover, observing that 0 < ‘fk(x) - f(a:)‘ < gi(z) for all k € N, by the integrability
of fr and f we conclude that
b

b b
[ - st = [ 16 - s@lar< [ gy <e vizn. o

a

Combining the Fubini theorem with Theorem we can conclude the Monotone

Convergence Theorem and the Bounded Convergence Theorem for multiple integrals.
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THEOREM A.149 (Monotone Convergence Theorem). Let A be a rectangle in R",
and fr : A — R be Riemann integrable for all k € N such that {fi}{_, converges

pointwise to a Riemann integrable function f on A. Suppose {fi}{_, is a monotone

sequence of functions; that is, fr < fr+1 or fi = frs1 for all k e N. Then

L f(z)dx = lim L fe(z)dx.

Proof. W.L.O.G. we assume that f; > fi1 for all k£ € N. We first prove the case
d
n = 2 and write A = [a,b] x [¢,d]. Define gi(x) = f (f(z,y) — f(z,y))dy . Then

C

gk = gri1 for all k € N. Moreover, Theorem [A.146] implies that {g;}?, converges
pointwise to 0, and the Fubini theorem (Theorem [A.99) implies that g is Riemann

integrable over [a, b] for all k € N. Therefore, by the monotone convergence theorem
for functions of one variable (Corollary [A.147) we find that

0= lim ngk(:v) dr = lim Lb (Jd (fulz,y) - f(x,y))dy)dx

k—o0 A

Now suppose that the conclusion holds for the case n = N. Then for n = N + 1, write

A = R x [c,d] for some rectangle R in RY, and define g;, by

d
gk(xh”' 7xN) = f (fk<m1a 7mN+1> —f<l’1,"- 7$N+1))de+1-

[

Then Theorem again implies that {g;}? , converges monotonically to 0 on R,
and the Fubini theorem (Theorem |A.99) implies that g is Riemann integrable over R
for all k£ e N. Write 2’ = (21, -+ ,xy). Then the validity of the monotone convergence
theorem for N-tuple integrals implies that

d
0= lim gk(x/> dr" = lim (J (fk(xlaxzv+1) - f(xla 171\1—&-1))de+1> dz’
k—o0 R

k—o0 R c

= lim | (fu(z)— f(z))dz. al

k—o0 A

THEOREM A.150 (Bounded Convergence Theorem). Let A be a rectangle in R™, and
fr : A — R be Riemann integrable for all k € N such that {fi.};2, converges pointwise

to a Riemann integrable function f on A. Suppose that there exists a constant M > 0
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such that | fr(z)| < M for all z € A and k € N. Then

| f@yar = tin [ G

Proof. Write A = [a1,b1] x -+ x [a,,b,]. For 1 < j <n—1, define

. bJ+1 bn
g](gj)<x17"’ 71'3) = f f Sup‘fé X1, an) _f<$1,"' 7xn)‘dxndx]+1 .

Jajia Jay 2k
Then g,(gj i fan, by] x e x [aj,b;] = R is a bounded decreasing sequence of functions
for all j € {1,--- ,n —1}. Moreover, since {fi}{_, converges pointwise to f, we must
have

lim sup ‘ff Ty, - 7xn)_f(x1a T 71‘77»)} = limsup|fg(x1, T 7x71)_f(x17 T 7x’rl)‘ =0.
k—00 p>p k—00

Therefore, Theorem |A.146| implies that that {g,i"il)},;‘ozl converges pointwise to 0 on
[a1,b1] X -+ x [an_1,b,_1]- By the fact that

. j+1 L
9 (w1, x5) = f 9 (@, wi) dajen

Jajt1

we also find that { gk 2)} r_1 converges pointwise to 0. By induction, we conclude that
{gk )}k , converges pointwise to 0 for all j € {1,- — 1}; thus Theorem |A.146| and
the Fubini theorem (Theorem [A.99) imply that

b1

0 = lim g,(cl) (1) dxq

k—o0 Jay

b1 bn,
=l [ [ sup e ) = fane )| do ey

k—oo Jaq ZZk
by bn
> limsupJ J |fulzr, o own) = fag, o mn)|day - - day
k—o0
hmsup J | fu(z) = f(2)|dz = limsupj | fu(z) = f(z)|da. o
k—o0 A

REMARK A.151. 1. If A is a bounded set with volume, we can choose a rectangle
S 2 A and consider g = ?2 as well as g = ?A. Then g, g : S — R satisfy the
assumptions in Theorem [A.149] and [A.T50} thus Lemma implies that

lim J fule) de = i | gufo) de = L o(z) dz L f(z) da

k—0o0
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In other words, the Monotone Convergence Theorem and the Bounded Con-
vergence Theorem holds for more general domain A, or to be more precise, for

bounded set A with volume.

2. The Monotone Convergence Theorem (MCT) can be viewed as a corollary of the
Bounded Convergence Theorem (BCT) since under the assumptions of MCT, we

can apply BCT (choose M = max{sup f(z),sup fl(x)}) directly to conclude
TreA zeA

the MCT. Here we prove MCT without the help of BCT to demonstrate the

power of the Fubini Theorem.

On the other hand, unlike the case in the theory of Lebesgue integrals we cannot
prove BCT using MCT since the infimum or supremum of a sequence of Riemann

integrable functions might not be Riemann integrable anymore.

A.6 Improper Integrals

The Riemann integral deals with the “integrals” of bounded functions over bounded
sets; however, often times we need to integrate unbounded functions over unbounded
sets, such as finding the area under an unbounded function above x-axis. The improper

integral is an answer to this particular situation.

A.6.1 Definition and basic properties

Let A < R” be a set whose boundary 0 A has measure zero, and f : A — R be
non-negative such that the collection of points of discontinuity of f has measure zero;
that is,

the set {x e A } f is discontinuous at x} has measure zero .

If A is bounded and f is bounded, then the Lebesgure Theorem (Theorem or
Remark [A.81)) implies that f is Riemann integrable over A. Now suppose that A is
unbounded but f is still bounded. Define Ay = A n D(0,k) and fr = fly,; that is,

fr is the restriction of f to Ay or

f(l') if re Ak,

A.30
0 otherwise . ( )

Ju(@) = {
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By the fact that 0(A n D(0,k)) € AU dD(0, k), 0 A has measure zero for all k > 0;
thus Corollary implies that A; has volume. By the fact that

{:c € Ay ’ fx is discontinuous at x} C 0A, U {x e A ’ f is discontinuous at x} ,

we find that f; is Riemann integrable over Ay, and Theorem implies that
f(z)dx = fr(x)de = J fr(x)de.
A Ay A

Since 0 < fr < fr41 for all k € N and {fx}{, converges pointwise to f, in view of the
Monotone Convergence Theorem (Theorem |A.149) (which has to be proved for the
case of improper integrals), we intend to define the integral of (bounded function) f

over (unbounded set) A by

L fla)dz = lim L fulw) do

if the limit exists. We remark that if f is not sign-definite, then {fi};2, defined by
(A.30) no longer converges monotonically to f.
Now suppose that A is bounded but f is unbounded. Define f; by

flz) if f(z) <k,

A3l
k  otherwise. ( )

fr(z) = (f Ak)(x) = min{f(z),k} = {

Then clearly {x e A | fr is discontinuous at x} - {x e A ‘ f is discontinuous at x};
thus f is Riemann integrable over A. Since 0 < fi, < fi41 for all k e N and {fi}7~,
converges pointwise to f, in view of the Monotone Convergence Theorem (Theorem
A.149)) again we intend to define the integral of (unbounded function) f over (bounded
set) A by

J f(x)dr = lim | fu(z)dx
A k=0 J 4
if the limit exists.

REMARK A.152. Instead of (A.31]), one might want to define fj by
fl@) if f(z) <k,

0  otherwise.

Ju(@) = {

The sequence { fx}; still monotonically converges to f; however, it is not easy to

see if the collection of points of discontinuity of f; has measure zero since the set
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{x €A } flz) = k} could be large. In other words, by defining f; in this way we do

not know the integrability of f; over A; thus it is meaningless to define the improper

integral as the limit of f fr(x) dz.
A

Finally we consider the case that A is an unbounded set and f is unbounded on
A. Several ways of defining the improper integrals are possible. One approach is to

define the improper integral of f over A by

JA f(z)dx = lim f(z)dz,

k= JA~D(0,k)

where J f(z) dx is itself the improper integral of (unbounded) f over (bounded)
AnD(0,k)
A n D(0,k). Another approach is to define the improper integral of f over A by

| f@yde = pim | (7 nby(a)ds.

where f (f A k)(x)dx is itself the improper integral of (bounded) (f A k) over (un-
A
bounded) A. We shall prove that these two approaches lead to the same limit.

Suppose that a = lim f(z)dx and f = lim | (f A k)(x)dx for some
k=0 JAAD(0,k) k=0 Ja
a,B € R. Let € > 0 be given. Then there exists L > 0 such that

o<a—f f@)de << We>1L.
AnD(0,0) 2

By the definition of improper integral of unbounded function over bounded set, for
each £ € N there exists N(¢) > 0 such that

osf f@Mx—J (Fak)(@)de <5 YE> N(@).
AnD(0,0) AnD(0,0) 2
W.L.O.G. we can assume that N(¢) > ¢; thus if k > N(L),

Oéa—f (f AK)(z)dx
AnD(0,k)
- LmD(07L) Jle) et LmD(o,L) fle)de - LmD(o,L)(f nR)e)do
+J (f/\k)(x)d:c—f (f A k)(z)d
AnD(0,L) A~D(O,k)

<f+f+J gAmuym—J (f AR) (@) de < e,
2 2 Janpo,r) A~D(0,k)
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where the last inequality is concluded by the non-negativity of f A k and the inclusion
D(0,L) < D(0,k). In other words, we proved that

a = lim f(z)dx = lim (f AE)(z)dx. (A.32)

k=0 JA~D(0,k) k=0 JA~D(0,k)
Similar argument can be used to show that 5 = lim (f Ak)(z) dx; thus we
k= JA~D(0,k)

established the identity a = 5. We note that the integral (f Ak)(z)de is
AAD(0,k)

monotone increasing in £ by the non-negativity of f, so the limit lim (f A
k= JA~D(0,k)
k)(x) dx either is finite or diverges to infinite.
The discussion above motivates the following
DEFINITION A.153. Let A < R" be a set whose boundary ¢ A has measure zero, and
f A — R be a non-negative function such that the collection of points of discontinuity

of f has measure zero. f is said to be integrable over A if the limit

JA f(z)dx = lim (f AE)(z)dx (A.33)

k=% JAnD(0,k)

is finite, and in such a case J f(x)dx is called the integral of f over A.
A

REMARK A.154. 1. For non-negative function f : A :— R (with f and A satisfying

assumptions in Definition [A.153)), if the limit f f(z) dx is infinite, we still
AnD(0,k)

call j f(z) dx the integral of f over A. However, in this case f is not integrable
A

over A.

2. Let A< R" and f: A — R be given in Definition [A.153| If F' < A is a measure

zero set whose boundary ¢ F' also has measure zero, then
Jf(:c)dxz lim (F A R) () d = 0,
F k=% JFAD(0,k)

where Theorem is used to evaluate the integral.

3. By the Monotone Convergence Theorem (Theorem [A.149)), (A.33]) always holds
if f: A — R is Riemann integrable; thus Riemann integrable functions are

integrable.
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Note that by defining the improper integrals in this way, several properties listed
in Theorem also hold. For example, if 0 < f < g and f,g: A — R are integrable,
then f fz)dx < f g(x) dx. Moreover, a result similar to Theorem [A.97| also holds.

A A

To be more precise , we state the result as follows.

THEOREM A.155. Let A, B < R" be sets whose boundaries 0 A and 0 B have measure
zero, and f : Au B — R be a non-negative function such that the collection of points

of discontinuity of f has measure zero. If A n B has measure zero, then

LUB f(z)de = JA F(z)do + fB f(z)de .

Proof. To simplify the notation, for each k € N we let f, = fak, and A, = AnD(0, k)
as well as B, = B n D(0,k). Since

(Ay v By) =2((Au B) n D(0,k))

0 (AuB)uaD(0,k) < dA LB UAD(0,k),
O(Ax 0 By) = ((An B) n D(0,k)) <

(AnB)udD(0,k) cdAudBuID(0,k),

we find that under the assumptions of this theorem, A, U By and A N By, have volume
for each k € N. Therefore, Remark implies that for each k € N, fyla,, frlp, and
fxla,~p, are all Riemann integrable over Ay U Bj. Since A, n By has measure zero,

Theorem [A.97] implies that

(f/\k)dﬂtzf

AkuBk

J f@)de = | f@yde+ | fle) de
(AUB)ND(0,k) A By,

=J (f/\k)dzzﬁ—f (f Ak)dx,
AnD(0,k)

BAD(0,k)

and the theorem is concluded by passing k to the limit. O

EXAMPLE A.156. Let f : [1,00) — R be given by f(x) = 2P for some p € R. If

p > 0, then f is unbounded, and in this case

1
aP ifl<x>=kr,

(fAk)(I):{ koifa> kb

thus

D=

k k
1 1 1
J (fAk)(x)dxzf :vpd:n+f1kdx=—(k:“p—l)+k(k—kp)
[1,00)(—k,k) 1 kP p+1
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whose limit (as k — o) does not exist.
When p <0, f is bounded by 1 on [1, ). Therefore,

L o) itp 1,

k
J (fAk)(x)dsz flo)de = { pr1
[1700)ﬁ(_k7k) 1 lOg k lf p = —
It is easy to see that the limit (as k — o) exists only when p < —1. Therefore, f is
integrable over (0, 1) if p < —1, and in this case

1 1
doe = lim —— (k"' — 1) = ———.
J[Loo)f(flf) . kl—{&p—f—l( ) p+1

EXAMPLE A.157. Let f : (0,1) — R be given by f(z) = 2P for some p € R. If
p =0, fis continuous on (0, 1), so f is Riemann integrable over (0,1). If p <0, f is

unbounded on (0, 1), so the Riemann integral of f no longer makes sense. Nevertheless,
we can find the improper integral of f using (A.33)): for each k € N,

1

xP ifx = ke,
(f Ak)(z) = , 1
Eif0<x<kr;

thus

» 1

1 kp 1 I{Z1+ 1 f 7&_1
[(Grm@ar = [ hars [ e pea® D 22D
° 0 R 1+ logk ifp=—1.

It is easy to see that the limit (as k — o0) exists only when p > —1. Therefore, f is
integrable over (0,1) if p > —1, and in this case

1 1+ 1
T $—11m7 kmr +1 _
L J = Jim R ) =

Those who are familiar with the improper integrals introduced in Calculus might
be confused with the way we compute the improper integrals in Example and
In fact, there are other ways of evaluating the improper integrals for functions

of one variable, and the following theorem is useful for this particular purpose.

THEOREM A.158. 1. Let f: [a,0) — R be bounded, non-negative, and continuous

except perhaps on a set of measure zero. Then

R—0

f[w) f(z)dz = lim f f(z (A.34)
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2. Let f : (a,b] - R be non-negative, bounded on |a + €,b] for all € > 0, and

continuous except perhaps on a set of measure zero. Then

dr = lim f fla (A.35)

(a, b] e—0F
Proof. 1. For each R > 0 sufficiently large, define Mg = sup f(x). Then for large

z€[a,R)
R >0,

LR fw)de = LR(f A Mg)(z) dr < f[a,«» f(x)dx.

Passing R to the limit, we find that

Jim LR F@)de < J[ | fwr (A.36)

On the other hand, note that for k > |al,

f(a,w]m(—k,k)g A R)(a)dr = Lk(f AR J fl@)de < lim LR f(z)dx

Passing k to the limit, we find that

J f(z)dx = lim (fAE)(x hmf flz)dx.  (A.37)
[a,0)

k=% J(a,00]~ (—k,k) R
Combining (A.36) and (A.37), we conclude (A.34).

2. For each € > 0 sufficiently small, define M, = sup f(z). Then for small
z€[a+e,b]
e >0,

b b
J f(2) da :J (faM)()dr< | flo)de
a+te a-+e (avb]
Passing ¢ to the limit, we find that
b
lim f f@yde< | fla)de. (A.38)
(a,b]

e=0% Jope

On the other hand, note that

b b
k)(z)dx = 1i k)( li :
[ nwwa= 1 [ Gawwae < i [ jo)as
Passing k to the limit, we find that
b
f(z)dzr = lim fAk)(z < lim f flx A.39
L (@) e—07 (a,b]m(fk,k)( €—>0+ ( )

Combining (A.38) and (A.39), we concluded (A.35)). o
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REMARK A.159. In view of (A.34)) and (A.35), we also have the following notation

for improper integrals for functions of one variable:

LOO f(x)dr = f[am) f(z)dz  and Lbf(m) dr = f(x)dz.

(a,b]

EXAMPLE A.160. Let f(x) = 2P as in Example |A.156| and [A.157] Since

1

R p+1 _ : _
fxpdxz p+1(R b ifp# -1,
1 log R ifp=-1,

and .

! (1 —eP) ifp £ —1,
prdxz p+1( ) P
€

—loge ifp=-1,
by Theorem [A.158 we find that f is integrable over [1,00) if and only if p < —1 and f

is integrable over (0,1] if and only if p > —1. These are the conclusions that we have
obtained in Example [A.T56] and [A.157]

09]

EXAMPLE A.161 (The Gamma function). For eacht > 0, define I'(t) = J rile " dx.
0

1. For 1 <t < oo, the integrand is bounded and non-negative. In fact, 2~ le ™ <

M;e~2 for some constant M; > 0 (we can choose M; = sup z'~'e™2). Since
z€[0,00)

| T=R

R R
— _ _z _z
J e xdazéj Me 2dx < —2Me™ 2 < 2M; < o0
0 0 z=0

we find that I'(¢) is well-defined for 1 <t < o0.
2. For 0 <t < 1, the integrand is unbounded near 0; thus by Theorem [A.T55| we
rewrite
0 1 0 " .
J e dy = J e dr + f i leT2e 7 2dx .

0 0 1
Since 7 te™® < 2! on (0,1] and z7'e™® < e7® on [1,%0), for € > 0 we have

[
1 1
1 ! 1 1
J v le ™ dr < f o ldr = ~2t =-(1-¢)<-
. t t t

£ r=e

and for R > 1,

Il
vl

R R -
2 e dx < e fdr = —e " =el—efgel,
1 1 =1

Therefore, I'(t) is also well-defined for 0 < ¢ < 1.



258 CHAPTER [Al REVIEW OF ELEMENTARY ANALYSIS

The following theorem provides different ways of computing the improper (multiple)

integrals.

THEOREM A.162. Let A < R"™ be a set whose boundary 0 A has measure zero, and
f A — R be non-negative such that the collection of points of discontinuity of
f has measure zero. Then f is integrable over A if and only if for each sequence

{Bir}7, < R" of bounded sets with volume satisfying

1. By € Bpyq for all k e N;

2. for all R > 0 we have D(0, R) < By for sufficient large k € N;

the limit lim (f nk)(x)dx exists.
k—o0 AﬁBk

Proof. “<" Simply choose By, = D(0, k) to conclude the integrability of f over A.

“="” For each ¢ € N, there exists N(¢) > ¢ such that D(0,¢) < By, for all k > N(¢).
Then

J (f/\é)(x)d:céf (fAﬁ)(q:)dxéj (FAk)z)de  Wh= N(0).
AnD(0,0) AnBy AnByg

Sincef (f AK)(2) dz = J ((f A k)1, ) (2) do < J f(x) dz, by the sandwich
AnBy A A

lemma we conclude that

JAf(:U)d:B— lim (fAl)(x)dr = lim (fAk)(x)dx. o

=% JAnD(0,0) k=0 JAnB,

In other words, as long as { By}, “expands to the whole space”, one can evaluate

the improper integral using

f f(x)dxr = hm (f~nk)(x)de.

An By

One particular sequence of sets {By}y., is given by By = [k, k] x -+ x [—k, k].
0

ExXAMPLE A.163. Consider the improper integral J e~ dx. Instead of evaluating
—00

this improper integral directly, we consider the improper integral e~ (@7 gA.
R2
Note that Theorem [A.T62] suggests that

f e~ (@) dA — lim e~ @) dA — lim e~ (@) g
R2 k=0 J1_k k] x [—k,k] k=0 Jp(0,k)
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By the Fubini theorem,

k k
lim e~ @) gA = lim (J e_(x2+y2)dy> dr = <J

k=0 J1_ g k] x [—k,k] koo J gk Nk —

0

2
e“”de) ,
while the change of variables formula (with (x,y) = (rcos,rsinf)) implies that

27 k
lim e~ @+ gA = lim e " rd(r,0) = lim <J e_TZTdr> do
k= Jpo,k) k=0 J10,k]x[0,27] k= Jo 0

' 27 671”2
= lim
k—0o0 0 -2

o0

. 2

Since j e~ dx = 0, we must have
—Q0

r=k 9
)d@ =lim7r(l—e®)=n.

r=0 k—0o0

*© 2
f e dr = /7.

—Q0
Now we define the improper integrals for general functions. We imitate the idea of
truncation (that is, f Ak if f > 0) and define

flx) i [f(z)| <k,
fr(x) = Eoif f(x) >k,

—k if f(z) < —k.
Note that fp = (=k) v (f A k) = (f* A k) — (f~ A k), where v outputs the maximum
of values from both sides of v, and f* = max{f,0} = f v 0 and f~ = max{—f,0} =
(—f) v 0 are the positive part and the negative part of f, respectively. Moreover, if
the collection of points of discontinuity of f has measure zero, so does the collection
of points of discontinuity of fi. In other words, f; is integrable over A n D(0, k) for
all ke N.

As in the previous discussion, we intend to define the improper integral of f over

A as the limit of fr(x)dx (as k — o0) provided that the limit exists.
AnD(0,k)

DEFINITION A.164. Let A < R" be a set whose boundary ¢ A has measure zero,
and f: A — R be a function such that the collection of points of discontinuity of f

has measure zero. f is said to be integrable if the limit

L f(z)dz = lim (—k) v (f AK)) (2)de

k=% JA~D(0,k)

= lim ((f* Ak)(z) = (F~ Ak)(z))dz

k=0 JAnD(0,k)
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exists, and in such case f f(z)dz is called the integral of f over A.
A

Note that if f is not sign-definite, the integral (k) v (f Ak)(z))dz is in
AnD(0,k)

general not monotone in k; thus in general we do not even know if the limit superior
and limit inferior of the integral agree. The following test, similar to the one introduced

in the series, provided a useful criterion for the integrability of functions.

THEOREM A.165 (Comparison Test). Let A € R" be a set whose boundary 0A
has measure zero, f,g : A — R be functions such that the collection of points of
discontinuity of f and g have measure zero. If |f| < g on A and g is integrable over

A, then f is integrable over A.

Proof. To simplify the notation, for each k£ € N we let fi, = (—k) v f A k and define
I, = f fr(x) dz. Since
AnD(0,k)

|((—k) VA k)(:zc) — <p(x)‘ <Y(x) — (Y Ak)(x) if || < and ke N, (A.40)

where the validity of (A.40]) is left as an exercise, we have for k > ¢,

[fi(x) = fe(@)| < [fulx) = f@)] + |fe(2) = f(2)] < g(2) = (g A k)(@) + g(x) = (97 O)(2)

<
<2(g(a) ~ (g A ().

As a consequence, for k >/,

|, — 1| = ‘J fr(x) d:c—f fo(x) dx‘
AnD(0,k) AnD(0,£)

_ ” fu() dx—f (fule) — fla)) ]
AnD(0,k)\D(0,£) AnD(0,0)

g(z)dr + 2‘[ (g(a:) — (g A é)(x))dm

<)
AnD(0,k)\D(0,0) AnD(0,6)

= x)dr — x)dxr + 2 z)—(gal)(z))dx.
JAmD(O,k)g( ) JAHD(O,K)g( Jdo + fAmD(O,E) (g( ) = (g~ O ))

Since g is integrable, identity (A.32) then implies that lim Iy — Ip| = 0; thus {I}7>,
Z;oo

is Cauchy. The absolute convergence of J f(z)dz is trivial since f* < g. O
A
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sinx

EXAMPLE A.166. Let f : [0,00) — R be given by f(z) = ] . Then ‘f )| <
o and the function y = x21+ . is integrable over [0, o) since
}%E%o OR o dr = }%iirgotan_lx ;: = I%iiréotan_lR = g
Even though the limit of the integral ((—=k) v (f Ak)(z))dz might not

AnD(0,k)
exists; however, there are special cases that the limit of the integral above exists

(including the possibility that it diverges to infinity). For example, if the limit

lim J (fTAk)(z)dx or lim f (f~ A k)(z)dx is finite, then
k=0 JA~D(0,k) k= JAnD(0,k)

L D(0,k) (k) v (f AR) @) do = hm ((FrAk)(@) = (f A k) (x))da

k=0 JAnD(0,k)

= lim (f* Ak)(x)dx — lim (f~ Ak)(z)dx.
k=% JA~D(0,k) k=% JA~D(0,k)

This observation motivates the following

DEFINITION A.167. Let A € R" be a set whose boundary ¢ A has measure zero,
and f : A — R be an integrable function. The improper integral f f(x)dx is said to
A

be absolutely convergent if
f fT(x)dx < oo and J [ (x)dx < o0,
A A

and in this case J f(x)de = J f(x)dx— f f~(x)dx, and f is said to be absolutely

integrable over A.

The improper integral J f(x) dzx is said to be conditionally convergent if

| rr@de= | 5@

EXAMPLE A.168. Let f : [0,00) — R be given by f(z) =

0 <r < R, using the integration by parts formula we obtain that

=R 1—
+J ﬂd —+ +J —dx—

sinx

Then for all

Rging 1 —cosz
dz| = |——
, X
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k .
Let I}, = f Slzxdw. Then the inequality above implies that {I};>; is Cauchy in R,
0

so the limit J dr = lim I}, exists. However,
0 T k—o0

0 (2k—1)r smx e (2k—1)7 9 E 1
+ _ 3 I —
J fH(z)dx = ZJ( % J( 81nxdx—7TZ2k_1—oo

2k— 2) k:l 2k— 2)71' k=1

© sin x

Jf I N BT WA
xr = —sm:z: r = — - = .
= 2k Jio2k—1)x s k

2%k—1)m
. . Cginz , . o
Therefore, the improper integral —— dx is conditionally convergent.
0 X

REMARK A.169. For absolutely integrable function f : A — R, one can compute
the integral of f over A by

L f(z)dx = lim (LHD(O . (fFAk)(z) = (f~nk)(2)) dx)

k—o0
= lim ((f* Ak)(z)dz — lim (f~ Ak)(2)) do
k=% J AnD(0,k) =% JAnD(0,k)
= lim fH(x)dr — lim [ (x)dx
k=% J AnD(0,k) k=% J AnD(0,k)
= lim (f*(z) = f(2)) dz = lim flz)dx. (A.41)
k=% J AnD(0,k) k=0 JanD(0,k)

where (A.32)) is used to conclude the third equality. In (A.41), the set D(0, k) can also
be replaced by increasing sequence of set { By}, as introduced in Theorem [A.162]

A.6.2 The Monotone Convergence Theorem and the Domi-
nated Convergence Theorem

In the remaining part of this section, we present some important theorems introduced

in Section [A.2.4] and [A.2.5] under the new settings of improper integrals. Since the

improper integrals are defined as the limit of Riemann integrals, we first need to
prove those convergence theorems, including the Monotone Convergence Theorem
and the Dominated Convergence Theorem (the improper integral version of Bounded

Convergence Theorem) for improper integrals, and then apply the Fubini theorem and
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the change of variables formula for Riemann integrals to conclude the counter-parts for
improper integrals by passing to the limit. To summarize briefly, the Fubini theorem
and the change of variables formula can be proved for absolutely integrable functions,
and the absolute integrability of a function can often be seen using the Tonelli Theorem
which will also be presented.

Noting that since we are concerned with the improper integrals, the sequence of
functions under consideration in general can be unbounded, so the assumption that the
sequence of functions is uniformly bounded by a constant in the Bounded Convergence

Theorem in general is pointless.

THEOREM A.170 (Dominated Convergence Theorem). Let A < R" be a set whose
boundary 0 A has measure zero, f : A — R be a function such that the collection
of points of discontinuity of f has measure zero, and f, : A — R be non-negative
integrable for all n € N such that {f,}>_, converges pointwise to f. Suppose that there
exists an integrable function g such that |f,| < g for alln € N. Then f is integrable,

and

n—0o0

JA f(z)dx = lim Afn(x) dx .

Proof. Since |f,(z)| < g(z) for all z € A, |f(z)| < g(z) for all z € A. By the
integrability of g, the comparison test (Theorem [A.165)) implies that f is also integrable.

Let € > 0 be given. Since f, g are integrable, there exists K > 0 such that

3

o<f g(x)dac—f (Grk)@)de <5 Vhk>K (A.42)
A A~D(0,k) 3

and

”Aﬂx)dm_LmD(Ok) ((—k)v(fAk))(x)dx‘ <§ Vk>K.

Moreover, since (—k) v (fo Ak) — (—=k) v (f Ak) p.w. as n — oo (due to the pointwise
convergence of {f,}2; to f), and |(—k) v (fa A k)| <k on A~ D(0,k), the Bounded
Convergence Theorem (Theorem implies that for each k € N there exists
N(k) > 0 such that

((—k)V(fAR)) () d:c‘ << VYn=N®k).

[, o (MR @) = [ -

AnD(0,k)
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Note that by Theorem [A.155 (A.42)) also suggests that for & > K,

J g(x)dx = J g(z)dx — J g(z)dz
AnD(0,k)C A AnD(0,k)

<f+f (g/\k)(x)dx—J o(z) dz <
3 Janpok) A~D(0,k)

w| ™

We also note that by Theorem again,

'J f(z)dr — f falz) dx‘ < ‘L fx)dx — LQD(OK) (K) v (frK))(z) dx‘
! ’ me 0,K) VA K)) () do - LmD(o K) (=K} v (fn n FO) () diE’

)J (fn/\K))(x) d:r;*f fulz) dx‘ + ‘f fu(z) da:),
AnD(0,K) AnD(0,K) AnD(0,K)C
and by the fact that ‘ fn‘ <g, implies that
[(=E) v (far K))(x) = ful®)] < g(x) = (g 7 K)(2).
Therefore, for n > N(K),

A A
2e
<3 + (9(z) = (g A K)(z)) dz + g(x) dx
AnD(0,K) AnD(0,K)C
2
<—8+Jg(x)dx—f (gn K)(z)dr <e. O
3 A A~D(0,k)

The Monotone Convergence Theorem for improper integrals, unlike the case in
the Riemann integrals, is no longer an immediate consequence of the Dominated
Convergence Theorem since the “integral” of the limit function might be infinite. It

requires a little bit more attention to get proved.

THEOREM A.171 (Monotone Convergence Theorem for Improper Integrals). Let
A < R" be a set whose boundary 0 A has measure zero, f : A — R be a function such
that the collection of points of discontinuity of f has measure zero, and f, : A — R
be non-negative integrable for all n € N such that {f,}o_, converges pointwise to f.

Suppose that {f,}_, is a monotone sequence of functions; that is, f, = fas1 or

fn < fog1 for alln e N. Then

Lf( o = lim | f(a)da

n—0o0
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Proof. W.L.O.G. we assume that 0 < f, < f,41 for all n € N for in another case
we let g, = f1 — f. which constitutes an increasing non-negative integrable sequence

of functions with limit f; — f. Moreover, by the Dominated Convergence Theorem

(Theorem |A.170]), we only need to consider the case that J f(z)dr = oo and show
A

n—00
for all n e N.

Let M > 0 be given. Since J f(x)dx = oo, there exists K > 0 such that
A

that lim J fn(z) dx = 0. We also assume the non-trivial case that J folz)dx < o0
A A

J (fAR)(x)de =2M  Vk=K.
AnD(0,k)

By the Monotone Convergence Theorem for Riemann integrals (Theorem [A.149)), for
each k € N there exists N (k) > 0 such that

—M<f (fn/\k‘)(a?)dx—f (fAk)(x)de <0  VYn=N(k).
AnD(0,k) AnD(0,k)
Therefore, for all k > K and n > N(K),

JA folz)dx = L fol(z)dx — LQD(QK)(fn A K)(z)dx + f (funK)(z)dx

AnD(0,K)

- LmD(o,K) o R)te) e f o R))dr

AnD(0,K)

>an(:c)dx—f (fank)(z)de+ M.

A AnD(0,k)

Passing k to the limit, we find that J fo(z)dx = M for all n > N(K). o
A

A.6.3 The Fubini theorem and the Tonelli theorem

Now we present the Fubini theorem. In the case of improper integrals, for the Fubini

Theorem to hold it requires absolute integrability of functions.

THEOREM A.172 (Fubini). Let A € R" and B < R™ be sets whose boundary 0 A
and 0B have measure zero in R™ and R™, respectively, and f : A x B — R be a
function such that f(x,-) is integrable over B for all x € A and f(-,y) is integrable
over A for all y € B. If f is absolutely integrable over A x B, then

LXBf(ﬂf’y)d@’y) = L (JB [ (@, y)dy ) do = L (L f,y)dz)dy
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Proof. We only prove the first equality since the proof for the other one is similar.
First we note that if f(x,-) is integrable over B for all x € A, so are f*(x,")

and f~(z,-). Since JBm[k Hm(f*/\k)(a: ,y)dy and f (f~~k)(z,y)dy are both

Bn[—k,k]™
increasing in k£ and bounded from above, by the Monotone Convergence Theorem

(Theorem |A.171)),
f f+(x,y)dy/f ffzy)dy  as k— o
BA[—kk]™ B

and

J [ (z,y)dy /J [ (z,y)dy  as k— .
Br[—k,k]™ B

By the Monotone Convergence Theorem again, we find that

pm| ( fBﬁ[W(fwf)(x,y)dy)dy: L( L 7 (2 )dy )i < o0

and

Jim (J (f7A k)(x,y)dy>dy = J (J f‘(af,y)dy)dw < 0.
=0 JAA[—k k] B[~k k]™ ANJB
By Theorem [A.162| and the Fubini theorem (Theorem |A.99)),
J f(a,y)d(z, y)
AxB

[ [ AR~ G AR

k—o0

J Jf*scydy dx f Jf xydy)dfv—L(JBf(x,y)dy)dx

Evaluating integrals by integrating iteratively, which is the main idea of the

= lim . (JBH[ . [(f* A k) (z,y) — (f‘/\k)(@",g)]djg)d:t

Fubini theorem, is an important tool to compute integrals. Therefore, how to check
the absolute integrability of functions so that the Fubini theorem can be applied
is an important subject. So far the only test we have for determining the absolute
integrability of functions is the comparison test (Theorem ; however, for a given
function f sometimes it is not easy to find an absolutely integrable upper bound.
Nevertheless, we can compute the integral of | f| by computing the iterated integrals

of |f| directly (without knowing if we can do this first), thanks to the Tonelli theorem.
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THEOREM A.173 (Tonelli). Let A < R™ and B <€ R™ be sets such that boundary
0(A x B), 0A and 0 B have measure zero in R*"™™ R" and R™, respectively, and
f:Ax B — R be a non-negative function satisfying

1. the collection of points of discontinuity of f has measure zero in R"*™;

2. the collection of points of discontinuity of f(z,-) has measure zero in R™ for all
reA;

3. the collection of points of discontinuity of f f(-,y) dy has measure zero in R".

o LXB Sl y)d(z,y) = L (JB flz, y)dy) dx . (A.43)

REMARK A.174. If A € R" and B < R™ are rectangular sets (not necessarily
bounded), then 0(A x B), 0 A and 0B have measure zero in R"*™ R"™ and R™,
respectively In general, the requirement for 0(A x B), 0 A and ¢ B have measure zero

(in corresponding spaces) is used to guaranteed that the truncation of f and f(z,-)

and j f(-,y) dy are Riemann integrable over truncated sets (A x B) n [—k, k]"*"™,
—k,k]™ and A n [k, k]™.

We also note that even if f : A x B — R is continuous, F'(z) = JB f(z,y) dy might

still be discontinuous at some points. For example, let A = [—1,1], B = [1,00) and
f(x,y) = |xly=*71*l. Then

0 ifz=0,
F(z) = .
1 otherwise,

which is discontinuous at x = 0. In general, we do not know if the collection of points

of discontinuity of F' has measure zero in R™ even if f is continuous on A x B.

Proof of Theorem [A173] We first prove that for each ¢ € N,
| ey = | (| Gan@d)i. ()
(An[—£,0")x B An[—t0n NJB

Once the identity above is proved, then by the fact that {(f/\g)l[,g,g]an}:il converges

to f pointwise and the convergence is monotone, the Monotone Convergence Theorem

(Theorem [A.171)) implies (A.43) immediately.
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Let ¢ € N be fixed. For each k > ¢, define gi(z) = J (f A€)(z,y)dy. Then
Bn[—k,k]™

gk < gg+1 for all E — N, and the Monotone Convergence Theorem (Theorem [A.171))
suggests that

lim gx(z) = JB(f/\E)(w,y)dy VeeA.

k—o0
In other words, {gx}{_, converges pointwise to J (f A0)(+,y)dy. Therefore, we apply
B
the Monotone Convergence Theorem again to conclude that

lim gr(z) dr = f

k=0 Jgn[—,0n An[—£,0n

(| 7 n06y) dy)as.
B
On the other hand, the Fubini theorem (Theorem |[A.99)) implies that
| awae- | (F A Oy, ):
An[-t,n (An[=£,0]") x (BA[—k,k]™)
thus the Monotone Convergence Theorem (Theorem [A.171)) implies that

lim gu(x) d = f (f A 0)(z, 9)d(z. )

k=0 J pAn[—e,0n (An[—£0]")x B
which concludes ((A.44)). al

COROLLARY A.175. Let A < R" and B < R™ be sets such that boundary 0 (A x B),
0A and 0B have measure zero in R"™ R™ and R™, respectively, f : A — R and
g : B — R be absolutely integrable. Then the function h : A x B — R given by
h(z,y) = f(z)g(y) is absolutely integrable, and

LXB h(z,y)d(z,y) = (L f(x) d:c) ( L 9(v) dy> ,

Proof. By Theorem the collection of points of discontinuity of |h| has measure
zero in R"*™. Moreover, by the integrability of g we find that the collection of points of

discontinuity of ‘h(x, )‘ has measure zero in R™ for each 2 € A. Since |f] is integrable

over A and

| inetay = 15 | lotwlas.

the collection of points of discontinuity of f |h(-,y)|dy has measure zero in R™. In
B
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other words, h satisfies condition 1-3 in the Tonelli theorem (Theorem |A.173)); thus

we have

| bl = [ (| o) = ( [ |r@]ae)( ] ow]d) <o

Therefore, h is absolutely integrable over A x B. Since h(z,-) is integrable over B for

all z € A and h(-,y) is integrable over A for all y € B, the Fubini theorem (Theorem

further suggests that
| wewda = | (| mwain)s = (| srie)(| o). -

A.6.4 Change of variables formula

As in the proof of the Fubini theorem (Theorem [A.172) and the Tonelli theorem
(Theorem [A.173)), we can also apply the Monotone Convergence Theorem (Theorem
A.171)) to conclude the change of variables formula for improper integrals.

THEOREM A.176 (Change of Variables Formula). Let U < R™ be an open set whose
boundary OU has measure zero, and g : U — R™ be an one-to-one €' mapping with
€ inverse; that is, g7' : g(U) — U is also continuously differentiable. Assume that
the Jacobian of g, J, = det([Dg]), does not vanish inU. If f : g{U) — R is absolutely
integrable, then (f o g)J, is absolutely integrable over U, and

[, oir= [ eailas = [ (7eaw] 5253

(:Clv"‘ 71"71)

e}

Proof. Let {U}y_, be a sequence of open sets such that ] Uy = U, and for each
k=1

k € N, 0U, has measure zero, U, ccU, and U, < U, 11. We note that such sequence of

sets always exists if U is open. Define f;" = f* Ak and f, = f~ A k. Then the change
of variables formula (Theorem |A.102)) implies that g(U}) has volume, and

Lk(fki 0 g)()|J4(x)| dz :f

9(Us)

fi(y)dy.

Passing k to the limit, by the Monotone Convergence Theorem (Theorem |A.171]) and
the absolute integrability of f we find that

L(fi @@= | )y <o

g(U
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thus

[ gwa={ rw-rw)d-| ool o
g(U) g(U) u

REMARK A.177. In Theorem [A.I76] except that the integrals under consideration
could be improper integrals, there is no need to have a larger open set V' so that
U <V which is required in the proof of Theorem [A.102] We also note that the change
of variables formula is valid for non-negative functions whose point of discontinuity

forms a measure zero set.

A.7 The Divergence and Stokes Theorem

A.7.1 The metric tensor and the first fundamental form

DEFINITION A.178 (Metric). Let ¥ < R™ be a (n — 1)-dimensional manifold. The

metric tensor associated with the local parametrization {V, ¢} (at p € ¥) is the matrix

9 = [gaslm-1)x(n—1) given by

20t )t
izlaya ayﬁ

Jap = wmz ¢;B = in V.

PROPOSITION A.179. Let ¥ < R" be a (n — 1)-dimensional manifold, and g =
[gaplm—1)x(n—1) be the metric tensor associated with the local parametrization {V, v}

(at p € X). Then the metric tensor g is positive definite; that is,
n—1 n—1
0
Z Gapv™ v’ > 0 Vo= Zzﬂ—w#o.
a,f=1 y=1

Proof. Since D has full rank on V), every tangent vector v can be expressed as the

n—1
linear combination of {a—w, cee o } Write v = )] v”a—w. Then if v # 0,
oy OYn—1 =1 o0yY
n n-—1 i i n
0<|v|g. = Z Z vaa—wvﬁ v _ 2 Gagv™ 0" . o

i=1a,f=1 Yo 0Up a,f=1

DEFINITION A.180 (The first fundamental form). Let ¥ < R" be a (n — 1)-
dimensional manifold, and g = [gas]m—1)x(n-1) be the metric tensor associated with
the local parametrization {V, ¢} (at p € ). The first fundamental form associated

with the local parametrization {V,v} (at p € ) is the scalar function g = det(g).
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The surface integral

Let ¥ < R be a (n — 1)-dimensional manifold, and {V, 1} be a global parametrization
of ¥; that is, ¥ = ¢(V). If f : ¥ — R is a bounded continuous function, the surface

integral of f over X, denoted by f fdS, is defined by
)

JE £ds - L( Fow)ad, (A.45)

where the integral on the right-hand side is the Lebesgue integral on a subset V of

R~ (thus dz’ is the (n — 1)-dimensional Lebesgue measure). In particular, if f =1,
the number J ds = J 1dS is the surface area of X.
b b
Since the surface integrals defined by ([A.45)) seems to depend on a given parametriza-

tion, before proceeding we show that the surface integral is indeed independent of
the choice of the parametrizations. Suppose that {Vi, 11} and {Vs, 19} are two global
¢!'-parametrizations of ¥ at p, gi, g» denote the metric tensors associated with the
parametrizations {Vy, 1}, {Va, s}, respectively, and g; = det(g1), g2 = det(g2) are
corresponding first fundamental forms. Let ¥ = v, ' 0t);. Then the change of variables

formula implies that

fvz(fozbz)@dx’: |

%1

(f o200 W) (V20 V)| Jyl d$'=f (f o) (VB2 0 W)| Ty da’,

V1

where Jy is the Jacobian of the map V. By the chain rule, we find that
[DU]'[(Dihy) o U] [(Dihy) 0 U|[DW] = [De ]| [Dun] ;

thus by the fact that g, = det ([Dyn] [Dyn]) and g, = det ([Diba] [Dis]), we
obtain that
det ([D\II])Q(gQ o) =g.

Since Jy = det ([D¥]), the identity above implies that |Jy|(1/g82 © ¥) = /g1, so we

conclude that

L (f 0 n)y/Er di’ = f (f 0 n)y/Eade’ (A.46)

Va2
Therefore, the surface integral of f over ¥ is independent of the choice of parametriza-

tions of ¥. In particular, the surface area of a regular % '-surface which can be
parametrized by a global parametrization is also independent of the choice of parametriza-

tions.
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Next, we study the surface integral over general (n — 1)-dimensional manifold that
cannot be parametrized using a single pair {V,1}. Let ¥ < R" be a (n—1)-dimensional
manifold, and {V;, ¥, }cr be a collection of local parametrizations satisfying that for
each p € 3 there exists i € Z such that {V;,v;} is a local parametrization of ¥ at p.
Since each ¥;(V;) € ¥ is open (relative to X), there exists open set U; € R™ such that
(V) = U; n 3. By Proposition , there exists a partition of unity {(;}er of &
subordinate to {U;},z. Intuitively we can define the surface integral of f over ¥ as

follows:

| ras=% [ wpas-3

i€l ieT YUinZ

Gl = [ (GPovEds.  (ad)

The surface integral defined above is independent of the choice of the partition of

unity.

A.7.2 Some useful identities

In this sub-section, we temporarily switch to a more general setting that the “surface”
(or more precisely, manifold) under consideration is the boundary of an open set of R".

Let ¥ < R" be the boundary of an open set €2 (thus an oriented surface), {V, ¢}
be a local parametrization of >, and N : ¥ — R" be the normal vector on > which is

compatible with the parametrization v; that is,

det ([t 12 i iy N0 ]) >0.

Define ¥(y’, yn) = ¥(y') + yo(N o) (y’). Then ¥ :V x (—¢,e) — T for some tubular
neighborhood 7 of X.

@(Oﬂ 1/} = (p_l

y, :l(yla e 7yn—1) G,'Rn71 \ |
N /,I W \ w(y/) e &QII'

RRTS A d =yt

Figure A.4: The map V¥ constructed from the local parametrization {V, 1}
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Since (V\I/)‘{ynzo} = [w,l Shg b b ENozp],

2 T T
det(VW)?| = [det (VT)") det(VT)] oy — Ot (VE)'vw) —
[ g1z - Ju-11 0O ]
921 g2 Jm-n2 O
— det ( : S : : ) -g.
Im-11 Ym-12 *° Jm-1@-1) 0
| 0 0 0 1

Defining J as the Jacobian of the map V¥; that is, J = det(VW), then the identity

above implies that
J=4g on {y,=0}.

Moreover, letting A denote the inverse of the Jacobian matrix of ¥; that is, A =

(V¥)~! and letting [gaﬁ](nq)x(nq) be the inverse matrix of I:gaﬁ:l(n—l)x(nfl)’ we find
that
n—1 n—1 !
la : : n—la :
A‘{ynzo} — Zlg ¢,a I : Zlg( 1) w,& .NO¢
As a consequence,
(IATe,)|, o = VE(NO). (A.48)

DEFINITION A.181 (The divergence operator). Let uw : @ € R* — R" be a vector

field. The divergence of u is a scalar function defined by

LR

divu = Z; pr

DEFINITION A.182. A vector field u : Q <€ R* — R® is called solenoidal or

divergence-free if divu = 0 in €.

A.7.3 The divergence theorem

THEOREM A.183 (The divergence theorem). Let Q@ < R™ be a bounded Lipschitz

domain, and v € €*(Q) n€(2). Then

f div'vdxzj v-NdS,
Q o0

where N is the outward-pointing unit normal of €.
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Proof. We prove the case that € is a bounded open set of class €2, and the general
result can be obtained by approximating the Lipschitz manifold by a sequence of €
manifolds.

Let {U,,}EX_, be an open cover of 0Q such that for each m € {1,--- , K} there
exists a €3-parametrization ¢, : V,, € R* ' — U, which is compatible with the

orientation IN; that is,

det ([¢ma1 R E¢man—1 :No 77Z)m]) >0 on Vm .

Define 9,,(y', yn) = Ym(y') + yu(N 0 10,,)(y/). Then there exists €, > 0 such that
U Vi X (—€my €m) — Wy, is a €2-diffeomorphism for some open set in R" such that
O 2 Vin X (—€m, 0) = Q W, while 9, : V,,, x (0,&,,) — int(Q) n W,,.
_ _ K
Choose an open set Wy < R" such that Wy < Q and Q2 < [ J W,,, and define
m=0

Yo as the identity map. Let 0 < (,, < 1 in €°(U,,) denote a partition-of-unity of Q

subordinate to the open covering {W,,}X_: that is,

K
D Gn=1 and spt((m) S U Ym.

m=0

Let J,, = det(VY,,), A, = (VI,,)7!, and g, denote the first fundamental form
associated with {V,,, 1 }. Using (A.48), \/gn(N o ¥y,) = Jpn(A) e, on V,, x {0} for
m e {1,--- , K}. Therefore, making change of variable z = 9,,(y) in each W,, we find
that

J v-NdS = i Lgmwmg“m(v-N)dS

o0 m=1

= SN[ (Gt d) N )y

m=11i=1

K n .
Y f (G © F) (1" 0 ) Ton(As) dy’
m X {yn=0}

m=1i=1

) (G o BT (A (0 0 0] dy.

m=1i=1 Y Vmx(—em,0) ayn

On the other hand, for a« € {1,--- ,n—1} and i e {1,--- ,n},

f (G o D)o (A ) (07 0 0,) ] dy = 0
Vm X (—€m,0)

Yo
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thus the Piola identity (A.10) implies that

(IR PN B G O

mlzgl

Z Z T (A (G © V) (07 0 0y dy

m=114,5=1 (—em,0)
+ ZI‘ZJ (G Dl An (0" ),
m=11,) 'm X (—€m,0

Making change of variable y = ¥,.!(z) in each V,, x (—&,,0) again, by the fact that
Z (v' 0 0),; = (dive) 0 0, and f div(Gv)dz =0,
=1 Wo

we conclude that

K K
f v-NdS :f div((ov) dz + Z (v V.)mdr + Z Cmdive do
oQ Wo

W’m 1 W’m

2 (v - V)G da + 2 (mdive d
Wm

zf(v-vm)ld:v—kfdivvdxzfdivvdm. o
Q Q Q

Letting v = (0,---,0, f,0,--- ,0) = fe;, we obtain the following
COROLLARY A.184. Let Q € R" be a bounded Lipschitz domain, and f € €*(2) N

€(Q). Then

o= [ fNyas,
0:161 o0

where N; 1s the i-th component of the outward-pointing unit normal N of €Q.

Letting v be the product of a scalar function and a vector-valued function in
Theorem [A.183] we conclude the following

COROLLARY A.185. Let Q) < R® be a bounded Lipschitz domain, and v € €1 (Q; R™)n
E(Q;R™) be a vector-valued function and p € €1 (Q) n €(Q) be a scalar function.
Then

J godivvdxzf (U-N)gpdS—f v-Veydr, (A.49)
Q 00 )

where N s the outward-pointing unit normal on 0f).
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The divergence theorem on surfaces with boundary

This section is devoted to the divergence theorem on surfaces in R? instead of domains
of R™. To do so, we need to define what the divergence operator on a surface is, and
this requires that we first define the vector fields on which the surface divergence

operator acts.

DEFINITION A.186. Let ¥ < R? be an open ¢'-surface; that is, 3 is of class €
and X N 0¥ = J. A vector field u defined on ¥ is called a tangent vector field on 3,
denoted by u € TY, if w-N = 0 on ¥, where N : ¥ — S? is a unit normal vector field

on X.

Having established (A.49), we find that the divergence operator div is the formal

adjoint of the operator —V. The following definition is motivated by this observation.

DEFINITION A.187 (The surface gradient and the surface divergence). Let ¥ < R®
be a regular €!-surface. The surface gradient of a function f : ¥ — R, denoted by

Ve f, is a vector-valued function from ¥ to T, given, in a local parametrization

{V, v}, by

n—1

o0 ap0(fo) oy
(V f)o,[vZ}: g g YRR
a%il 0Ya ayﬁ

where [¢g®?] is the inverse matrix of the metric tensor [g.s] associated with {V, 1},

2
and {%} are tangent vectors to .
0yp ) p=1

The surface divergence operator divy, is defined as the formal adjoint of —V??; that
is, if w € T, then
—f’u,-vmde:ffdivEudS Vfe%H(Z:R).
b by

In a local parametrization (V, 1)),

(divgu) o — 2 i[\fgo‘ﬁ ((wo)- 695)]

where g = det(g) is the first fundamental form associated with {V,}.

REMARK A.188. Suppose that f : O € R?> — R for some open set containing .
Then the surface gradient of f at p € 3 is the projection of the gradient vector (V f)(p)
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onto the tangent plane 7,3. In other words, let N : 3 — R3 be a continuous unit

normal vector field on X, then
(V= H)(p) = (VHP) = [(VFp) N@)N(p) (or simply V**f =Vf—(Vf N)N).

DEFINITION A.189 (Surfaces with Boundary). An oriented 4*-surface ¥ < R? is

said to have €*-boundary 0¥ if there exists a collection of pairs {V,, ¥m}X_,, called

a collection of local parametrization of ¥, if

1. YV, < R? is open and 1, : V,, — R? is one-to-one map of class €* for all
me{l,--- 7K};

2. YY) NS # G forallme {1,--- K} and £ < U= _ ¢, (Vi)

3. Y i Vi — Um(Vin) is a €*-diffeomorphism if 4, (V,,) € %5

4. Py VE =V {ys > 0} — (Vi) nY is a €F-diffeomorphism if U, n0X # ;
5. U i Vi 0 {y2 = 0} = U, 00X is of class €° if U, n 02 # .

Now we are in the position of stating the divergence theorem on surfaces with

boundary.

THEOREM A.190. Let ¥ € R? be an oriented €' -surface with €*-boundary 0%,
N : ¥ — S? be a continuous unit normal vector field on ¥, and T : 0¥ — S? be
tangent vector on 0% such that T is compatible with N (which means T x N points
away from X). Then

J u-(TxN)dSZJdiVEudS Vue TS A& (R A G5 RY)
o by

where divy 1s the surface divergence operator.

Proof. Let {V,,, ¥ }E_, denote a collection of local parametrization of ¥ such that
UV (Vi) N0 = ¢ for 1 <m < J, and ¥,,,(V,,) N 03 is non-empty and connected for
J+1<m< K. W.L.O.G., we can assume that V,, = B,, = B(0, r,,) for some r,, > 0.

Write Uy, = ¥m(Vim), and let {g,,}X_, be the associated metric tensor, as well as the
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associated first fundamental form g, = det(g,,). Let {(n}X_, be a partition-of-unity
of ¥ subordinate to {U,,}%_,. Then

K

[ diveuas - > [ cutivuas
J 2 p aw
- © a o o L rm
N mZ=1 a%_:l JBW(Cm wm)aya [@gm ((u wm) ay@ )]dy
Ohm
" Cm © wm m © ¢m =) |dy .
m= J+1a;1f [\/?g ((u ) oys )] Yy

Let n denote the outward-pointing unit normal on either 0B,, for 1 < m < J or dB;
for J+1<m < K. Since ¢, 0¥, = 0 on dB(0,1y,) for 1 <m < J, and ¢, 0¥, =
on {ys > 0} n 0B(0,7,,) for J +1 < m < K, the divergence theorem (on R?) implies
that

JdlvzudS— 2 2 Jm ummz) @gzﬁ((uowm) %ﬂ)]ai(cmowm)dy

m=1 a,f=1

)

m=J+1 a,f=1 Y Bmn{y2=0}

:—ZJ (u - Valm) © YmA/8m dy

VY (UmmE

(G e[ VB (o ) - 52) ]y

i Z mem{m:o}(Cmowm)(uo% [ Z Nar/8mYnm B(wm]

m=J+1 a,B=1

Since

K
> f (u-V5lm) © Ym/Bm dy
m=1J¥m' UnnD)

K

K
:ZJ (“'Vm%)ds{(u'VZCm)dszo,

we conclude that

JleszS— Z J Cmowm>(uo¢m>‘[ i \/gimgaﬁ wm] Y-

m=J+1 mm{yQ 0} a’ﬁ:
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On the other hand,

LE (T xN)d ZJ (e - (T x N) ds

m=J+1 0XNUm

-2

m=J+1 Bmn{y2=0}

(G om0 ) - [ (T 5 N) o | T2 [y

Therefore, the theorem can be concluded as long as we can show that

2
S na/En g2 2 (T x N) o ¢m% on By oy =0t (A50)

a,B=1 ay

Let T,, = Z Nor/Emg 1/Jm on B, n {y2 = 0}. Since n, = —do,, we find that
a,B=1

Ohm
T 2 200anm{y2=O};thus

oy

Tm - (Tot,) =0 on B, n {y2 =0}.
Moreover, noting that 7,, is a linear combination of tangent vectors a(;zm, we must
B

have

Tm - (Noty,) =0 on By, n{y=0}.
As a consequence,

Tm//(TXN)me on Bmﬁ{yQZO}.

Om o111 points toward ¥, by the fact
ayQ 0x

Since (T x N) points away from ¥, while
that

Ohm  w 030U a M
a,f=1

Y2
we must have 7, - (T x N) o, >0on B, N {yg = 0}. In other words,
Tm = [Tl (T x N)o¢,  on By 0 {yz = 0}.
Finally, since

E afs 'yt; ( Q;Z)m 6 ¢m 22 é T;Z)m
m " m g;ﬂL (o3 Y gm gm ’ g7 lgm g n ?
ay ayﬁ 1 ay]_

a,B,v,0=1

we conclude that 7, = ‘8¢m (T x N) o, on {ya = 0}; thus (A.50) is established. o

REMARK A.191. On 0%, the vector T x N is “tangent” to 3 and points away from
Y. In other words, T x N can be treated as the “outward-pointing” unit “normal” of

0% which makes the divergence theorem on surfaces more intuitive.



280 CHAPTER [Al REVIEW OF ELEMENTARY ANALYSIS

A.7.4 The Stokes theorem

DEFINITION A.192 (The curl operator). Let u: Q2 € R* - R", n =2 or n = 3, be

a vector field.
1. For n = 2, the curl of u is a scalar function defined by
2 .
curlu = Z €34 UY; -
ij=1
2. For n = 3, the curl of u is a vector-valued function defined by
3
i k
(curlu)’ = Z EijkU; -
k=1

The function curlu is also called the vorticity of u, and is usually denoted by one

single Greek letter w.
THEOREM A.193 (The Stokes theorem). Let u : Q < R? — R3 be a smooth vector
field, and ¥ be a €'-surface with €*-boundary 0% in Q. Then

J u~Tds=f curlu - N dS,
ox b

where N and T are compatible normal and tangent vector fields.
To prove the Stokes theorem, we first establish the following

LEMMA A.194. Let Q € R? be a bounded Lipschitz domain, and w : Q — R® be a

mooth vector-valued function. If ¥ < Q is an oriented €*-surface with normal N, then

curlw - N = divg(w x N) on X. (A.51)
Proof. Let O < Q be a ¥'-domain such that ¥ € dO and N is the outward-pointing

unit normal on dO. In other words, ¥ is part of the boundary of O. Since

i _ 09 g i
(Vo) = aTS\OIN + (Voo) on 00,
by the divergence theorem we conclude that for all ¢ € €1(0),

J (curlw - N)pdS = J curlw - Vo dr = J (N x w)-VedS
00 o 00

= J (N x w) - VippdS = f divoo(w x N)pdS'.
20 20

Identity (A.51)) is concluded since ¢ can be chosen arbitrarily on . 0
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Proof of the Stokes theorem. Using (A.51)) and then applying the divergence theorem
on surfaces with boundary (Theorem [A.190)), we find that

L curlu - N dS = L dive(u x N)dS = Lz(u x N)- (T x N)ds = Lz(u -T)ds

in which the identity (u x N) - (T x N) = » - T is used. o

A.7.5 Reynolds’ transport theorem

Let €1 and €25 be two Lipschitz domains of R" with outward-pointing unit normal IN

N -
and n, respectively, and the map ¢ : < 01 — Qs  be a diffeomorphism; that
y =z =1y

is, 1 is one-to-one and onto, and has smooth inverse. Let f € () N (), and
F = f o4 which in turns belongs to €1(;) n € (). By the divergence theorem,

af = n;)\xr
() x—fm(f () dS

Qo 5w,
On the other hand, by the chain rule we have that

Z_Z &‘yl - ; [ox] ]%Z ;

thus if A = (V)™

af'w:zn:Aﬂfa—F. (A.52)
J

Letting J = det(V) be the Jacobian of ¥, by the change of variable y = ¥ (y) and
the Piola identity,

Of()sz gi(w( )) det(Veh) (y dy—ZJ (JA'F)d

Qs (9%

The divergence theorem again implies that

af( )da = ZL JAJFN; ds,

Qs 8.177,

j=1

which further implies that

JATN
fn)(x)dsS, :f F JATN|dS, . A.53
., m@as. = | P AN s, (A5
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Let 1*(dS,) denote the pull-back of the surface element dS, having the property that
for any function h defined on 09y = ¥(0€2),

| h@yas. = [ heviwerias,;
P(0€1)

o

in other words, ¥*(dS,) = 1/g(y) dS, for some “Jacobian” ,/g of the map ¢ : Q; —
0. Therefore, (A.53)) suggests that

. JATN
mas— [ [ ullt(ds) = [ (70w o PATN]as,

Since f can be chosen arbitrarily, the equality above suggests that

JATN AN
noy = JATN] ~ JATN| (A.54)
and
Y*(dS,) = |JATN|dS, . (A.55)

We finish this section by the following

THEOREM A.195 (Reynolds’ transport theorem). Let Q € R™ be a smooth domain,
Y Qx[0,T] - R™ be a diffeomorphism, Q(t) = ¥(Q2,t) and f(z,t) be a function
defined on §U(t). Then

T pande = [ fetde + J (0f)(@,1)dS, , (A.56)
dt Jo Q) a9(t)

where o is the speed of the boundary in the direction of outward pointing normal of

0Q(t); that is, with n denoting the outward-pointing unit normal of (1),

o= oy ") n

Proof. By the change of variable formula,

f fxtdx—ff (4,1),1) det (Vo) (y, 1) dy

Let f(¢(y,t),t) = F(y,t), A = (V¢)™!, and J = det(Ve). By (A.8) and (A.52), we
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find that

d
i Jg(t) flz,t)dx = f [ft(w(y,t), t) + ey, t) - (Vo f ) W[y, b), t)]J(y,t)dy
+ 2 f y’ JAJth)(y’ )

2,7=1

th (y,0), )y + ZJ thJF,jJJrFJAJthJ](y,)

i,7=1

J(fto@b Jdy + ZJ (JAIGIF),; dy,

i,7=1

where the Piola identity (A.10]) is used to conclude the last equality. The divergence

theorem then implies that

d

il e = | Gowrays > [ wiNviras,

3,7=1

As a consequence, changing back to the variable x on the right-hand side, by (A.54])
and ({A.55)) we conclude that

d f(z, t)de = ftxtdal—i-ZJ (o f)(x,t)dS,. O

dt Jo Q) Py

A.8 Exercises
In this set of exercise, the Einstein summation convention is used.
PrROBLEM A.1l. Complete the following.

1. Let 0..’s are the Kronecker deltas. Prove
EijkEirs = 5jr6ks - 5j55kr . (A57)
2. Use (A.57) to show the following identities:

(a) ux (vxw)=(u-w)v—(u-v)w if u,v, w are three 3-vectors.
(b) curlcurlu = —Awu + Vdivu if w : Q — R? is smooth.
() w x curlu = V(|uf?) ~ (u- V)u if u: © — R is smooth.
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PROBLEM A.2. Let ¢(-,t) : Q@ — Q(t) be a diffeomorphism as defined in Theorem
A.195, and J = det(Vv) and A = (Vi)~L. Complete the proof of the Piola identity,

identities (A.11)), (A.54) and (A.55)) by the following argument:

1. Let u(-,t) : Q(t) — R™ be a smooth vector field. Show that
f dive dr = f JAI(wo )’ dy;
Q) Q ’
thus by the divergence theorem,

f u-ndS, = f JA) (w0 9)'N; dS, — f (JAD),; (wowp)idy.  (A.58)
o0Q(t) o0 Q

2. By (A.58),
J (JAD),; (worp)'dy =0 Yu(-,t): Q(t) — R vanishing on 0Q(t).
Q
As a consequence, the Piola identity is valid.

3. By the Piola identity, (A.58) implies that

f w-ndS,= | JA(uov)'N;dS, Vu(,t):Qt) — R" smooth.
20(t) o0

Therefore, identities (A.54)) and (A.55)) are also valid.

4. By identity (A.11) (which is obtained independent of ), show that

Jo=JAJY, .



Appendix B

Important Topics in Functional
Analysis

B.1 The Hahn-Banach Theorem

DEFINITION B.1. A vector space X is said to be a topological vector space if there
is a topology 7 on X so such that

(a) every point of X is a closed set, and

(b) the vector space operations (addition of vectors and multiplication with scalars)

are continuous with respect to 7.

DEFINITION B.2. The dual space of a topological vector space X is the vector space

X’ whose elements are the continuous linear functionals on X .

PROPOSITION B.3. A complex-linear functional on X is in X' if and only if its real
part is continuous, and that every continuous real-linear u : X — R s the real part of

a unique f e X'.

DEFINITION B.4. A map p from a real vector space V to R u {£oo} is said to be

sub-linear over V if

p(Au) = Ap(u) VueV,A>0,
p(u+v) < p(u) + p(v) V (u,0) eV x V.

285
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THEOREM B.5. Let X be a real vector space, p a sub-linear function over X , M a
vector subspace of X . Suppose that T a linear functional over M and Tx < p(zx) on

M . Then there exists a linear functional T over X such that
Tr =Tz YeeM,

and

—p(—z) < Tz <plx) VzeX.
COROLLARY B.6. If X is a normed space and xo € X , there exists T € X' such that
Txo = |zo]x and |Tx| < |z x VreeX.

THEOREM B.7. Let A and B are disjoint, non-empty, conver sets in a topological

vector space X .
(a) If A is open, then there exists T € X' and v € R such that
ReTx <~y < ReTy
for every x € A and everyy e B.

(b) If A is compact, B is closed, and X is locally convex, then there exist T € X',
v1,72 € R such that
ReTx <y <y < ReTy

for every x € A and every y € B .

THEOREM B.8. Suppose M is a subspace of a locally convex space X , and xq € X .
If xy is not in the closure of M , then there exists T € X' such that Txqg = 1 but
Tx =0 for everyx e M .

THEOREM B.9. If f is continuous linear functional on a subspace M of a locally
convex space X , then there exists T' € X' such that T = f on M .

THEOREM B.10. Suppose B is a convex, balanced, closed set in a locally convex
space X , xg € X, but ©g ¢ B. Then there exists T € X' such that |Tz| < 1 for all
reB, butTxg>1.
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B.2 The Open Mapping and Closed Graph Theorem

THEOREM B.11 (The Baire Category Theorem). Let X be a complete metric space.
Q0

(a) If {U,}*_, is a sequence of open dense subsets of X , then () U, is dense in X .
n=1

(b) X is not a countable union of nowhere dense sets.

DEFINITION B.12 (Open mapping). Let X and Y be two topological vector spaces.
A mapping f: X — Y is said to be open if f(U) is open in Y whenever U is open in
X.

THEOREM B.13 (The Open Mapping Theorem). Suppose that X and Y be Banach
spaces, and T € B(X,Y) is surjective (i.e., onto). Then T is an open mapping.

THEOREM B.14 (A generalization of the Open Mapping Theorem). Suppose that
X be a Banach space, Y be a topological vector space, and T : X — Y s linear,

continuous and surjective (i.e., onto). Then T is an open mapping.

COROLLARY B.15 (The Bounded Inverse Theorem). Suppose that X and Y be
Banach spaces, and T € B(X,Y) is bijective (i.e., one-to-one and onto), then the
inverse map of T is bounded, or T~ € B(Y, X). Equivalently, there exist positive real

numbers ¢ and C such that
clz|x <|Tzly <Clz|x VzeX.

THEOREM B.16 (The Closed Graph Theorem). Suppose that X and Y are Banach
spaces, and T : X — Y is linear. If G = {(z,Tx) | x € X} is closed in X x Y, then
TeABX,)Y).

B.3 Compact Operators

DEFINITION B.17 (Compact operators). Suppose X and Y are Banach spaces and
U is the open unit ball in X . A linear map 7' : X — Y is said to be compact if
the closure of T'(U) is compact in Y. It is clear that T is then bounded. Thus
TeAX)Y).
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DEFINITION B.18. An operator T' e #(X) is said to be invertible if there exists
S € B(X) such that
ST=1=TS.

In this case, we write S =771,

DEFINITION B.19 (Spectrum and resolvent set). The specturm o(7') of an operator
T € #(X) is the set of all scalars A such that T'— AI is not invertible, and the resolvent
set p(T) is the complement of o(T') in the scalar field. Thus A € o(T) if and only if at

least one of the following two statements is true:
(i) The range of T'— A is not all of X .
(ii) T — AI is not one-to-one.

DEFINITION B.20 (Classification of ¢(7)). The spectrum of 7' € HA(X) is the

(disjoint) union of the following three sets:

(i) The point spectrum o,(7") = {A\ € C | T'— AI is not one-to-one}. If A € 0,(T),

A is also called an eigenvalue of T'.

(ii) The continuous spectrum

o.(T) = {\e C| T — A is one-to-one, and has dense range}.

(iii) The residual spectrum

0.(T) ={AeC | T — A is one-to-one, and does not have dense range}.

PROPOSITION B.21. The spectrum of a bounded operator T' € (X)) is bounded.
THEOREM B.22. Let X and Y be Banach spaces.

(a) If T e A(X,Y) and dim R(T') < oo, then T is compact.

(b) If T e B(X,Y), T is compact, and R(T) is closed, then dim R(T') < .

(¢) The compact operators form a closed subspace of B(X,Y) in its norm-topology.

(d) If T'e B(X), T is compact, and X\ # 0, then dim N(T — \I) < .
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(e) IfdimX =00, T e B(X), and T is compact, then 0 € o(T).
(f) If Se B(X), TeAB(X), and T is compact, so are ST and TS .
Proof. (a) and (f) are trivial and left as exercises.

(b) f Y = R(T) is closed, then Y is complete, so that T is an open mapping of X
onto R(X). Let U be the unit ball in X', then V =TU is open in Y. Since T

is compact, V' is pre-compact. Therefore, there exist vy, - , ¥, such that
v o+ v (1)
- U it 5V)

Let Z be the vector space spanned by 41, -+, . Then dimZ < m, and Z
is a closed subspace of Y. We also note that (1) implies V < Z + %V. Since
Z =X forall A #0,

1 1 1
VcZ+-VcZ+74+-V=J+-V.
2 4 4
We then see that

e}
ﬂ Z+27"V)=2Z.
However, it would further 1mphes that kV € Z forall ke N,so Z =Y.

(c¢) Let ¥ be the collection of compact operators in Z(X,Y), U be the unit ball
in X, and T e X. For every r > 0, there exists S € ¥ with |S — Tlaxy) <.
Since SU is totally bounded, there exists points x1, - -- , z, in U such that SU is
covered by the balls B(Sx;,r). Since |Sx —Tx|y < r for every x € U , it follows
that TU is covered by the balls of B(T'x;,3r). Thus TU is totally bounded as
well, so T e .

(d) Let Y = N(T'— AI). The restriction of 7" to Y is a compact operator whose
range is Y. By (b), dim(Y) < 0.

(e) © wihiich cantragdietsto B onto map since if it is onto, then dim R(T) = 0

DEFINITION B.23 (Adjoint operators). The adjoint operator 7% of an operator
T e #(X,Y) is the unique bounded operator belonging to #(Y”’, X’) satisfying

<T&3, y*>Y = <£C, T*y*>X :
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THEOREM B.24. Suppose X and Y are Banach spaces and T' € B(X,Y). Then T

1s compact if and only if T* is compact.

Proof. (=) Suppose T is compact. Let {y%}*_, be a sequence in the unit ball of Y.
Define

fy) =y, yn)y  VyeY.

Since |fn(y1) — fu(y2)] < |1 — v2ly, {fu}or, is equi-continuous. Since T(U) has
compact closure in Y (as before, U is the unit ball of X), Arzela-Ascoli theorem
implies that {f,};_, has a subsequence {f,;}72, that converges uniformly on T'(U).

Since

?

1T, = T, [ = sup KT, g, = Yy )y | = sup | fu, (T) = fo, (T)
xe e

the completeness of X’ implies that {T*y:;j }7, converges. Hence T is compact.

(<) can be proved in the same fashion. o

DEFINITION B.25. Suppose M is a closed subspace of a topological vector space X .
If there exists a closed subspace N of X such that

X=M+N and M n N = {0},

then M is said to be complemented in X . In this case, X is said to be the direct sum
of M and N, and the notation X = M @ N is used.

LEMMA B.26. Let M be a closed subspace of a Banach space X .
(a) If dim M < oo, then M is complemented in X .
(b) If dim(X /M) < oo, then M is complemented in X .

The dimension of X /M s also called the codimension of M in X .

Proof. Note that the closedness of M is only used in (b), while in (a) the closedness

is implied by the finite dimensionality (so no assumption is needed).

(a) Let {e1,---,e,} be abasis for M . Then every x € M has a unique representation

r=oq(x)er + -+ op(z)e, .
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«; is a continuous linear functional which vanishes on the span of {e, -+, €;_1, €41,

and can be extended to a continuous linear functional that only take non-zero
values in the 1-dimensional space spanned by e;. Let N be the intersection of
the null space of these extensions. Then X = M @ N .

(b) Let {e1, - ,e,} beabasis of X/M (closedness of M is used to define the quotient
space), and 7 : X — X /M be the quotient map. Pick z; € X so that mz; = e,
and define N to be the span of {z1,--- ,2,}.

Then X = M@ N. O

LEMMA B.27. Let M be a subspace of a normed space X . If M is not dense in X ,
and if r > 1, then there exists x € X such that

x| x < but lze—yl|lx =1 YVyeM.
Proof. There exists x; € X whose distance from M is 1, that is,
inf{|z1 —y|xlye M} =1.
Choose y; € M such that |z, —yi|x <7, and put z =z — y; . o

THEOREM B.28. If X is a Banach space, T € B(X), T is compact, and A # 0,
then T'— X has closed range.

Proof. By (d) of Theorem [B.22] dim N(T'— AI) < 0. By (a) of Lemma[B.26, X is the
direct sum of N(7T'— AI) and a closed subspace M . Define an operator S € #(M, X)
by

Sx =Tz — \v.

Then S is one-to-one on M. Also, R(S) = R(T — A). Similar to the proof of
Lax-Milgram theorem, to show that R(S) is closed, it suffices to show the existence of
an r > (0 such that

rlelx < [[Szlx  YaeM.

Suppose the contrary that for every r > 0, there exists {x,} in M such that |z,|x =1,
Sz, — 0, and (after passage to a subsequence) Tz, — zo for some zq € X (by the
compactness of T'). It follows that Az, — x¢. Thus zy € M since M is a closed

subspace, and

Szog = lim (ASz,) =0.

n—0o0
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Since S is one-to-one, xy = 0. However, |z,|x = 1 for all n, and zy = lim Az, ,
n—aoo

hence |zo|x = |\ > 0. al

COROLLARY B.29. The continuous spectrum of a compact operator T € B(X)

contains at most one point, namely 0.

THEOREM B.30. Suppose X is a Banach space, T € A(X), T is compact, r > 0,
and E is a set of eigenvalues \ of T such that |A\| > r. Then

(a) for each Ne E, R(T — ) # X, and
(b) E is a finite set.

Proof. We first show that either (a) or (b) is false then there exist closed subspaces
M,, of X and scalars \,, € F such that

My My Ms< -+, (1)
T(M,) < M, forn>1, (2)
(T — N\ 1) (M) € M, forn > 2. (3)

Suppose (a) is false. Then R(T — A\gl) = X for some \g€ E. Let S =T — Ao,
and define M,, = N(S™), i.e., the null space of S™. Since )¢ is an eigenvalue of T',
there exists x; € My, 21 # 0. Since R(S) = X, there is a sequence {z,}_; in X such
that Sz, .1 =x,,n=1,2,3,---. Then

S "t =21 #0 but S g =Sz =0.

Hence M, is a proper closed subspace of M, ;. It follows that (1) to (3) hold, with
A = Ao

Suppose (b) is false. Then F contains a sequence {\,} of distinct eigenvalues of 7.
Choose corresponding eigenvectors e, , and let M,, be the (finite-dimensional, hence
closed) subspace of X spanned by {e;,--- ,e,}. Since A, are distinct, {e1, - ,e,} is
a linearly independent set, so that M,,_; is a proper subspace of M, . This gives (1).
If z € M, , then

T = Q161 + - Qpéy,

which shows that Tz € M,, and

(T — )\n[)ﬂf = Oél()\l — )\n)el + -+ Oénfl(/\nfl — )\n)en,l € Mn,1 .
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Thus (2) and (3) hold.
Once we have closed subspace M, satisfying (1) to (3), Lemma [B.27] gives us
vectors y,, € M,,, for n = 2,3,4,---, such that

lynllx <2 and |y, —z|x =1 ifxe M, ;. (4)

If 2 < m < n, define
2 =Tym — (T = X\1)yn -

By (2) and (3), z € M, . Hence (4) shows that
1Ty = Tyl x = [Aagin = 2lx = allyn — A 2lx = 1Al > 7

The sequence {T'y,}>_; has therefore no convergent subsequences, although {y,}>_, is

bounded, contradicting to the compactness of T'. o

REMARK B.31. Let H denote a Hilbert space. T € Z(H) is said to be normal
if TT* = T*T. A much deeper result states that a normal operator T' € B(H) is

compact if and only if it satisfies the following two conditions:
(a) ¢(T) has no limit point except possibly 0.
(b) If A # 0, then dim N(T'— \]) < 0.

THEOREM B.32 (The Fredholm Alternative). Suppose X is a Banach space, T €
B(X), and T is compact.

(a) If A # 0, then the four numbers

a=dimN(T — \) o =dim N(T* — M)
8 = dim X /R(T — AI) B = dim X /R(T* — AI)

are equal and finite.
(b) If X #0 and X\ € o(T), then X is an eigenvalue of T and of T* .

(¢) o(T) is compact, at most countable, and has at most one limit point, namely, 0.
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Proof. Suppose Mj is a closed subspace of a locally convex space Y, and k is a positive
integer such that £ < dimY /M. Then there are vectors y; , - - - , yx in Y such that the
vector space M; generated by M, and yy,--- ,y; contains M;_; as a proper subspace.
Each M; is closed, and hence by Theorem [B.8| there are continuous linear functionals
Ty, -, T on Y such that T;y; = 1 but T;y = 0 for all y € M;_;. These functionals
are linearly independent, so if > denotes the space of all continuous linear functionals
on Y that annihilate M, , then

dimY /My < dim X.

Let S =T — M. Apply this with Y = X | My = R(S). Since R(S) is closed,
¥ = R(S)t = N(S*), so B < a*. Next, take Y = X’ with its weak*-topology, and
My = R(S*). A result from functional analysis states that R(S*) is weak™-closed.
Since ¥ consists of all weak*-continuous linear functional on X’ that annihilate R(S*),
¥ is isomorphic to *R(S*) = N(S), hence 8* < a.

Next we show that a < 3, and the same proof can be used to show that o* < *,
so the proof of (a) (and hence (b) and (c)) is complete. Assume the contrary that
o > (. By (d) of Theorem B.22] o < c. By Lemma [B.26] there exists closed
subspaces E and F' such that dim F' = § and

X=NS)®E=R(©S)®F.

Every x € X has unique representation = = 1 + x9, with x; € N(S), 25 € E. Define
m: X — N(S) by mz = x1. It is easy to see (by the closed graph theorem that
7 is continuous.

Since we assume that dim N(S) > dim F', there is a linear mapping ¢ of N(S)
onto F' such that ¢xg = 0 for some xy # 0. Define

Oxr =Tx + onx VreeX.

Then ® € A(X). Since dim R(¢7) < 0, ¢ is a compact operator, hence so is P .
Observe that ® — A\ = S +¢r. If x € E | then mx =0, so (» — A\)z = Sz ; hence

(@ — \)(E) = R(S).
If x € N(S), then 7z =z, (P — M)z = ¢z ; hence

(® = A)(N(S)) = ¢(N(S)) = F.
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Therefore, R(® — AI) = R(S) + F' = X . Moreover, \ is an eigenvalue of ® (with
as a corresponding eigenvector), and since ® is compact, Theorem states that
R(® — A\I) cannot be all of X . o

COROLLARY B.33. The residual spectrum of a compact operator T' € HB(X) contains

at most one point, namely 0. Moreover, o(T) = c,(T) u {0} .

COROLLARY B.34. Suppose that H is a Hilbert space, and T € B(H) is compact.
Then R(T — M) = N(T* — XI)* for all A # 0.

REMARK B.35. If T'e #(X) is compact, then the injectivity of 7" — AI implies the
invertibility of T'— AT if A # 0.

REMARK B.36. A much deeper result states that the spectrum of a bounded operator
T € #(X) is also compact.

B.3.1 Symmetric operators on Hilbert Spaces

Let ‘H be a Hilbert space, and T' € Z(H). By Riesz representation theorem, given a

continuous linear functional y* € H', there exists y € H such that
oy om = (hy)y  VheH.
In particular, let h = T'x, and suppose the representation of T*y* is z, then
(@, 2)u =@, Ty )u = Tz, y*)u = Tz, y)y VheH.

The element z € H is denoted by T"y. In this case, T" is also called the adjoint
operator of 7' (and 7" can be thought as the representation of 7).

DEFINITION B.37 (Symmetry). The operator T' € Z(H) is called symmetric if
T=T".

LEMMA B.38. Suppose that T € B(H) be symmetric, and

m= inf (Tu,u)y, M= sup (Tu,u)y .

[ulx=1 [ullz=1

Then o(T) < [m, M], and m, M € o(T) .
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Proof. Let A\ > M . Then L : H — H’' defined by
Lu,ppu = (Au—Tu,0)n  VeoeH

is bounded and coercive: the boundedness is trivial, and the coercivity follows from
that
Lu,uyg = (Au— Tu,u)y = (A — M)|ul3, .

Therefore, by the Lax-Milgram theorem, £ : H — H' is one-to-one and onto, so is
M — T since A — T is the representation of £. Therefore, A\ ¢ o(7T"). Similarly,
A¢o(T)ifX<m. Soo(T) < [m,M].

Let [u,v] = (Mu — Tu,v)3 . The proof of the Schwarz inequality (Proposition ?7)
implies that

[u,v]| < ‘[u,u]‘1/2|[v,v]|l/2.

Taking the supremum over all v such that |v|lz; = 1, then
[Mu— Tu|y < C’(]\/[u—Tu,u)}r{2 VueH (B.1)

for some constant C'.
Let {u}y2; be such that ||ug| = 1, and (Tug, ur)yy — M. Then (B.1) implies
|Muy, —Tugllg — 0ask —oo. If M ¢ o(T), MI —T is invertible and has a bounded

inverse (by the bounded inverse theorem), so
U = (M[ — T)il(M’U,k — Tuk) —0inH
which contradicts to |ug|y = 1 for all k. Hence M € o(T'). Similarly, me o(T). o

THEOREM B.39. Let H be a separable Hilbert space, and suppose that T € B(H)
is compact and symmetric. Then there exists a countable orthonormal basis of H

consisting of eigenvectors of T'.

Proof. Let {\;}72, be the sequence of distinct eigenvalues of 7', Ay # 0. Set A\g =0,
and Hy = N(T — A1) for k > 0. Then dimH; < o0 if £ > 0. Moreover, if z; € H,;

and z; € H;, then
)\i<xi7$j>?-[ = (Txi,xj)y :(SL’Z',TSL’]')H =>\_](171,LU])'H = (xl-,xj)ﬂ = 0 1f’l #* j .

Therefore, the subspaces H; and H; are orthogonal.
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Let H be the smallest subspace of H consisting of all these #;, i = 0,1,--- . Then
H = {chuk ‘ meNu{O},uker,akeR}.
k=0

We note that T(#H) < H , and this further implies that T'(H") < H' since
(Tu,v)y = (u, Tv)y =0 VueH" veH.

The operator T =T |42 , the restriction of T" to HL | is also compact and symmetric.
In addition, o(7T") = {0}, since any nonzero eigenvalue of 7 would be an eigenvalue of
T as well. According to the previous lemma, (Tu, u)y =0 for all u e H' . But then if

u,ve H-,
2(Tu,v)n = (T(u+v), (u+v))y — (Tu,u)y — (Tv,v)y =0

Hence T = 0 on H'. As a consequence, H* < N(T) € H, so H' = {0} . Thus H is
dense in H .

An orthonormal basis of H then can be obtained by choosing an orthonormal basis
for each subspace Hy, k = 0,1,--- . Note that the separability of H implies that
Ho has a countable orthonormal basis, and these basis vectors are all eigenvectors

corresponding to A\g = 0. o

B.4 The Peetre-Tartar Theorem

The following theorem due to Peetre and Tartar can be used to derive various Poincaré
type inequalities, and sometimes is useful to guarantee the existence of solutions to
certain PDEs.

THEOREM B.40 (Peetre-Tartar). Let X, Y, Z be three Banach spaces, A€ B(X,Y)
and K is a compact operator in B(X,Z) such that

Cillulx < [Auly + |Kulz < Cofulx  Vwe X (B.2)
for some positive constants Cy and Cy. Then

1. The dimension of Ker(A) is finite, the mapping A is an isomorphism from
X /Ker(A) on R(A), and R(A) is a closed subspace of Y. We recall that R(A)
is the range of A.
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2. There exists a constant Cy such that if F' is a Banach space and Ly € B(X, F)
which vanishes on Ker(A), then

3. If G is a Banach space and Ly € B(X,G) satisfies
Lou # 0 Vu e Ker(A)\{0}, (B.4)

then
Csllullx < [|Auly + |Lou|e < Cy|u|x Vue X (B.5)

for some positive constants C3 and Cy.

Proof. 1. Because of (B.2), we find that
ClHuHX < HKUHZ < OQHUHX Yue Ker(A) . (B6)

Let {u,}>_; be a bounded sequence in Ker(A) < X. Since K is compact, there
exists a subsequence {unk}zozl such that {K unk}zo:l converges in Z. Using
we find that {unk}zo:l converges in X. In other words, the identity map
¢ : Ker(A) — X is compact; thus (b) of Theorem implies that Ker(A) is

finite dimensional.

Consider the quotient space M = X /Ker(A) which is a Banach space with

quotient norm
I[ul],, = ir%f]HuHX Viule M orue X.
ue|u

We remark that the infimum above is in fact minimum since Ker(A) is finite
dimensional. In the following, we let ¥ denotes an element in X such that
I[u]|ar = |[@]|x. Equip R(A) with norm ||-||y. Then (R(A),|-|y) is a topological
vector space. Since A : M — R(A) is bounded surjective, the open mapping
theorem (Theorem implies that A is an open mapping; thus

[l < ClALully  ¥[u]eM

which further implies that R(A) is closed. In fact, if {A[un]}le is a convergent
sequence in R(A), then {[u,]}r_, is Cauchy in M; thus {[u,]};_, converges to
a limit [u] € M and {zél[un]}:?:1 converges to Alu] in Y.
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Finally, the injectivity of A further suggests that
A7 < ClAA™ | = Clloly Vv e R(A).

Therefore, A~! € B(R(A), M).

2. Since L; vanishes on Ker(A), we find that
Liu= L= LiA ' Alu]  VYue X;
thus for all u e X,
|Liulp < [Lizcem | AT Alullx < |Lacem AT e | Al ly
< LIz 1A | areayan [ Auly

which concludes by letting Co = [|A™ ] z(rea),m)-

3. Since Ly € A(X, G), it suffices to show that there exists C' > 0 such that
lullx < C[|Auly + | Laulc] Vue X .

Suppose the contrary that there exists {u,}?_; such that |u,|x = 1 while

1 . .
[Aun |y + | Lous|e < - for all n € N. Since K € #(X,Z) is compact, there
exists a subsequence {unk}zo:l such that {K unk}zo:l converges in Z. Moreover,
{Au, }°_, converges to 0; thus using 1} we find that {unk}zo:l is Cauchy in
X. Suppose that hm 0 Uny = U. Then by the continuity of A and L,, we must
have Au = Lou = O thus by condition (B.4]) we conclude that u = 0 which
contradicts to that

Jullx = lim ug, |[x = 1. 0
k—0o0

EXAMPLE B.41. Let © be a bounded domain, E; = H'(Q), Ey = E3 = L*(Q2), A
be the gradient operator, and K be the identity map. The Rellich theorem implies

that the assumptions in the Peetre-Tartar theorem are valid.

1. The kernel of A is the collection of all constants; that is, Ker(A) = R. There-
fore, 1 of the Peetre-Tartar theorem suggests that the gradient operator is an
isomorphism from H'(Q)/R to L*(). In other words, one has

which is the Poincaré inequality.
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2. If F = H'(Q)/R, and L, is defined by

1
Lu:u——f udzx ,
' €2 Jo

then 2 of the Peetre-Tartar theorem implies the Poincaré inequality (2.33]).
3. Let G = L*(0Q) and k € L®(0Q). If k # 0 on a portion of 0, and define Ly by
Lou = ku Vu e Ker(A)\{0},

then the trace estimate implies that Ly, € #(FE;, G); thus the use of part 3 of
the Peetre-Tartar theorem leads to the Poincaré inequality (2.33]).

EXAMPLE B.42. Let Q < R? be a bounded smooth domain, E; = H({;R3),
Ey = E3 = L*(;R?), A be the gradient operator, and K be the identity map. Recall
that

1. Let G = L?(09Q), and L, be defined by
Lou=u-N YuekFE.

Then Ly clearly belongs to #(E;, G) because of the trace estimate. Moreover,

since € is bounded and smooth, N : 02 — S! is onto; thus
Lyu #0 Vu e Ker(A)\{0} .
Therefore, 3 of the Peetre-Tartar theorem implies that
| i) < ClIDu]r2) + |u-N|p2@e)] — Vue H(Q)

which, in particular, implies the Poincaré inequality.

2. Asin 2, letting G = L?(0€;R3) and Ly be defined by Lyu = u x N can be used

to conclude that

which further shows that the Poincaré inequality holds.



Appendix C

The Laplace and Poisson Equations

DEFINITION C.1. On regions 2 € R", the Laplace operator A, also called the

Laplacian, is defined as

n (;32
A:;ax'.

DEFINITION C.2. A €?-function u is called a harmonic function if Au = 0.

SN

C.1 The Fundamental Solution

When 2 = R", the Laplace operator has radial symmetry, and we may search for

harmonic functions on R* which depend only upon the radial component. Letting
r=lzf,

we look for a harmonic function u satisfying

Since L , by the chain rule,
oxr; r
ou dv or Lox 0w 0, . x N , 1 22
ox; dr oz =v(r) r’ o ox? Com; [v (r) T ] - (T)T’Q T (T>[7’ B r3]
Therefore,
L 0%u n—1
Au = @:v”( )+ . v'(r) .
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Hence Au = 0 if and only if

n—1
V' + —0v' =0.
r

If we consider solutions away from r = 0 and suppose that v/(r) # 0, then

n—1

[logv/'(r)] = .

This is a simple ordinary differential equation which we can directly integrate to find
that for r > 0,
blogr+c¢ (n=2)

v(r) =

Tn_g—i_c (HZB),

where b and c¢ are constants. These radially symmetric functions, harmonic away
from the origin, provide us with the singular integral kernels on R" and explicit
representations for the solutions to the Poisson equation —Awu = f, at least when the

forcing function f is “nice” enough.
DEerFINITION C.3. The function

1
—5-log 2] (n=2)
T
(z) = 1

> 3),
(n — 2)w,_q|x|n—2 (n>3)

defined for x € R", x # 0, is the fundamental solution of Laplace’s equation, where

wy_1 denotes the surface area of the unit ball in R* and is defined by

27Tn/2
Wn1 = ——,
" T(n/2)
where ' denotes the Gamma function.
. : : P 0%F
Notation. We will use that notation F,; to denote —, while F';; denotes
ox; 0x;0x;
and similarly for higher-order partial derivatives.
A direct computation shows that
Ty,
D, (x) = x|,
+la) = —a
1
Qi (x) = [— 226;5 + nxixj] 2|2,
Wn—1
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and we have the following derivative estimates:

|q)>i (I‘)| < w |x|1_n’ (C'la)
n—1

. ()] < ——[e| ™, (C.1b)

D@ ()| < Cn, |a) a2, (C.1o)

where D® and || are the multi-index notation defined by the following

DEFINITION C.4 (Multi-index). An n-dimensional multi-index is a vector a =
(v, -+, ay) of non-negative integers. || is defined as the sum of oy, and a! is defined

as the product of ay!, i.e.,

n n
la| = Z ar and ol = Hak!.
k=1 k=1

The differential operator D¢ is defined by

Da a a1 (’) Qn
T dxt OQam

When the (spatial) variable is specified, we simply use D to denote DS .

C.1.1 Uniform and Holder continuous functions

For € € R"™ open, a function u : 2 — R is Lipschitz continuous if
ju(@) —u(y)| < Cle—y| V z,yel, (C.2)

where C' is a constant that depends on €2 but not on the function w itself. The
inequality provides a uniform modulus of continuity. The standard example of
functions which are Lipschitz continuous but not differentiable is given by u(x) = |z|.
It is interesting to refine this functional framework to be able to discern the regularity
of functions u(x) = |z|* for positive a < 1. We wish to understand how “cuspy” the
graph of u is near the origin, for example. To do so, we replace the difference quotient

bound in (C.2)) with the following inequality:
u(z) —u(y)] < Cle —y[*  Va,yel. (C.3)

Functions which satisfy the inequality (C.3) are termed Hélder continuous with

exponent .



304 CuaptER [C| THE LAPLACE/POISSON EQUATIONS

DEeFINITION C.5 (Continuous functions and compact support). For 2 € R", we let
%°(Q) denote the collection of continuous functions on 2, and we denote by €2 (£2)

the collection of those functions in ¢°(Q) with compact support contained in €.

DEFINITION C.6 (Bounded continuous functions). For {2 € R™ we set
¢°(Q) := {u: Q — R|u is bounded and continuous},

with norm ||uf4oq) = max lu(x)|. For integers k > 0, we let €*() denote the
collection of functions possessing partial derivatives to all orders up to k which are
bounded and continuous on Q. We use 6%_(Q2) to denote the functions in €*(B) for
all bounded balls B contained in €.

DEFINITION C.7 (Hélder continuous functions). For 0 < a < 1, we set

Q) == {ue Q)] |u

7oQ) T [u]%;o,a(g) < OO},
where u(e) — u(y)
u(z) —u(y
[u]0.0(0) = sup ~
x,yed ‘x - y‘
TH#Y
The norm of u in €**(Q) is |ufgo.a@ = [t|go@) + [ulgoa)-

THEOREM C.8. The space €°*(Q) endowed with the norm | - |4oaq) is a Banach

space.

We leave the proof as an exercise for the reader.

We will denote €2*(Q) = €%(Q) N €2(Q).

C.1.2 The Poisson equation —Au = f in R"

Our objective, here, is to produce explicit solutions to the Poisson equation —Au = f
in R". We will show that convolution between the fundamental solution ® and the

“forcing function” f is a solution to this problem.

DEFINITION C.9. We set
ue) = | o)) dy ()

whenever ®(z — ) f(-) € L'(R").
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LEMMA C.10. Suppose that f is bounded and integrable with compact support. Then
if u 1s given by (C.4), ue €Y(R™) and for any v € R* andi=1,...,n,

wile) = | @it - )iy,

Proof. Since f is bounded with compact support, the integral

L) = [ e dy

is well-defined and continuous (in x). It suffices to show that it is the derivative of

ua) = | o—usway

Let p: (0,00) — R be a smooth, monotone increasing function such that

() = 1 if ze(2,00), 4 1] <2
PE7 V0 it ze(o,1), ¢ PISS

and define
w) = [ o(E=)et - nsway.

€
Note that since p is uniformly bounded and ® € L'(R"), by the dominated conver-
gence theorem, u, — wu uniformly as ¢ — 0 on compact subsets. Furthermore, as
D, [p( i Z yl )@ (x — y)]f(y) is also integrable for € > 0, we may differentiate under
the integral to find that

Ui (z) = JR ‘ [p<|x - y|)<1>(fv - y)]f(y) dy

naxz
_ T —yi |z —y| _
- | = () e - s ay

+fnp<'w‘y')q>,i (v — )£ (y) dy.

€

Therefore,

freslo) = 1) < [ [Z22 (2 ot~ )l

# [ = () s - wllswlas.

€
Note that [p| < 1 and |p'| < 2. Moreover, since spt(1 — p) < [0, 2], it follows that
spt(1 — p(2)) = [0,2¢]. Similarly, since spt(p’) < [1,2], we see that spt(p/(%)) <

€
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[€,2¢]. As a consequence, for the case n > 3 (the case n = 2 is left as an exercise for
the reader) ,

|tesi () = Li(2))]

2 |fllee@ _n 1 f]l o0 Y
<—J Sy +2dy+f — By Ty
€ Je<lz—yl<2¢ Wn-1 lx—y|<2e (H - 2)C“-)nfl

w ) 2¢ 2¢
< M=o E f J rdrdS. + f f dras. |
Wn—1 € Jjz|=1 Je |z|=1 JoO

NH)

€

2e 2e
rdr+f dr]—>0 as € — 0;
0

hence u.,; — I; uniformly as € — 0.
Finally, by the uniform convergence of u, to u and u,.,; to I; as € — 0, we conclude
that

T

dx,»] = u(xg) + J Lidx; ;

o

T Ou,

u(z) = limu(z) = lim [ue(mo) + . Er

e—0 e—0

thus u,; = 1I;. o

REMARK C.11. Given that D® is integrable near the origin, it is possible to compute
the first partial derivatives of u by taking the limit of a sequence of difference quotients
of u. On the other hand, since D?® is not integrable near the origin, analysis of second
partial derivatives of u require some sort of limiting process, wherein the singular
behavior at |z| = 0 is either excised or regularized.

For example, we might consider removing a small ball near the origin, and defining

an approximation to u as follows:

u(z) = JRD\B@,@ B(x — ) f(y) dy,

which makes @, a differentiable function. However, as the domain of integration also
depends upon z, differentiation of %, becomes a bit complicated, requiring a change of
variables. To avoid this procedure, one alternative is the introduction of the cut-off
function p (introduced in the above proof), which has the similar affect of removing
the singular region, without any difficulties in differentiation.
THEOREM C.12. Suppose that Q € R™, f e €%(Q) with 0 < a < 1, and suppose
that u is given by (C.4). Then u € €*(R"), and for any x € R®, and 1,7 = 1,...,n,
Uyj () = L @i (z —y)(fly) — fla))dy — f(x)f P, (z —y)N; dSy , (C.5)
0

Qo
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where Qg is any bounded, smooth domain containing ). In particular,
—Au=f in R". (C.6)

REMARK C.13. Before starting the proof of Lemma [C.12] we explain why a formula
like (C.5)) is well-defined. Note that as D*® is not integrable for |a| = 2, ®,;; (z —

Vf() ¢ LY(R™) even if f € €*(R"). Nevertheless, the integral J P (z—y)(fly) —
f (x))dy is well-defined for all z € R® due to the Holder Continuii&;f of f. In particular,
it is essential that second-derivatives of ® are multiplying the difference [f(y) — f(x)]
— the Holder continuity of f “cancels” the singular nature of D?® near the origin, at
least enough so that the integral converges.

The presence of the boundary integral on the right-hand side of is necessary

in order to cancel the effect of the subtraction of f(z) from f(y).

Proof of Theorem[C.12] To see that (C.6) follows from (C.5)), notice that Au = w,;

and that according to ,
wi(0) = | =) (1)~ F)dy— 1) [ 0o - y)NdS,.
Q o
Since ®,;; (x—y) = 0if z # y, and D,;; (x— ) (f(-) — f(z)) € L'(R"), the first integral
on the right-hand side vanishes. Thus
Uy () = —f(2) J Q,; (x —y)N,dS, . (C.7)
290
Choose R > 0 sufficiently large (for example, R = diam(Q2) + 1) so that Qqcc B(x, R),
and let A = B(z, R) — Q. Since A®(x —-) =0 in A, the divergence theorem implies
that
0 zqu)(:c—y) dx =f DO(z —y) -n(y)dS,+ | DP(x—vy)- n(y)dS,,
A 0 B(z,R) 290
where n denotes the outward-pointing unit normal to dA . Since n = —N on 0€),
substitution into shows that

Ui (v) = —f(z) LB( . D, (x — y>NidSy

—(zi — yi) —nYi — T
= —f(x J ——|r —y| "=—=—4dS
(2) b @ L I

1

Wn—1

- /()

f RIS, = — f(x).
0B(z,R)
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Next, we establish (C.5)). Following the proof of Lemma |C.10| we define

i) = [ (= D)as s ay.

€

The derivative of this integrand has an L!'(R™) dominating function, so the dominated

convergence theorem allows to differentiate under the integral. We thus find that

Ve () =L [ax]p<|x;y|)] (@ — ) ) dy+f9 p<|$;y|><1>,¢j (2 — ) f(y) dy
:LO [axj (|x_y|)] y) — f(z))dy
-1 [, [ (% y‘)]%(w—wdy

+L/%|—y5qﬁm—yxﬂw—f@»@

€

+ f(x) L p<|x _y|)c1>,ij (z —y)dy.

€

We will show that v!,; converges to the right-hand side of ((C.5|) uniformly. Since

0
Qi (x—y) = —a—yCID,i (x — y) , integration by parts shows that
j

LAt

N e R L B e R At

and hence that

€

ity @) = [ [s(EE)]es - (1000 - )

+Lﬁ<mzy5q@m—yxﬂw—fm»@

€

1@ [ o(F ) o - pas,.
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Following the proof of Lemma [C.10] by the Holder continuity of f,

| e () o=t - 1)

€
<l ot :
Voo 102;” [2sle = )llf W) = Sy
< ( xz_y’ip<’x y‘)“q)ﬂ (z—y Hf (x)wy
Je<|z—y|<2e 6’%’ - y‘
< ( Z[f]ﬁoag)’ ’1—n+ady
Je<|z—y|<2e €Wn—1

€EWn—1

2 a 2e
=mj J rdrdS, - 0 ase—0.
|z|=1 Je

Here we note that since R can be chosen independent of x € €) | the convergence above

is in fact uniform in x . Similarly, by (| ),
x —
| = () o - 0w - s@)a
0

- 2e
<MJ fT“‘ldrdSzHO as € = U;
|z[=1

and again the convergence above is uniform in z € . Consequently, v’,; converges to
the right-hand side of uniformly as e — 0.

It remains to show that v!,; — u,;; as € — 0. From Lemma , v! — u,; uniformly
as € — 0, so using the fundamental theorem of calculus (as in the proof of Lemma
, we indeed see that u,;; must be equal to the right-hand side of . o

C.2 A Representation Formula

For a point y € €2, the function ®(z — y) is harmonic if = # y. Therefore, letting
v(z) = ®(z — y) in Green’s second identity (2.2)),

ou
sz O(x —y)Au(z)dr = -[mk O(x — y)ﬁ—N(:v) s, — Lﬂk u(z) N

where Q) = Q\B(y, %) . For k big enough, 09, = 0Q u 0 B(y, %) . Therefore,
ou

0P ou
J (y%)u(m)afN(a:—y)de: aQ<I>(ac— )6N( ) dS, +LB( ;)@(x_y)aT\I(:”)de

0d
- Lgu(x)aN(w —y)dS, — JQ\B( 1)<I>(3: —y)Au(z)dr,
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here we have to note that the unit normal on ¢ B(y, %) points to the center y. For
v e dB(y.3),

1
—logk ifn=2
2

(I)(:E - y) = kn—2 )
3 >
TR ifn>3
0P Er-t
g —y) = VP(r — 1) - —7) = )
N Y) = Vo —y) - kly - ) o

Therefore, as k — o0,

0D ou
u(z) oz — y) dSy — u(y) and f oz — 1) 2 (z)dS, — 0.
LB(%}C) oN 0By, L) oN

Moreover, f
Qg

u € €*(Q) satisfies

O(x — y)Au(z) de — J ®(x — y)Au(z)dx as k — 0. As a consequence,
Q

0 0P
uw) = [ ow-0 2w, - [ witw-nds,— [ ay-osu)dy. (©3
o9 oN oo ON Q
REMARK C.14. The integral f ®(x —y)f(y)dy is called the Newtonian potential
Q
with density f.

Given the formula (C.§)) it is tempting to believe that the equation

—Au = f in Q,

u=g on 0f),

ou
6_N:h on 0f2

has a solution

u(z) = Lﬂcb(a: —y)h(y) dS, —J

SR —a)dS,+ | By dy.

Q

This is, in fact, not the case, and we shall examine this in great detail below.

C.3 Properties of Harmonic Functions

C.3.1 Mean-value property

Now we consider harmonic functions on an open set 2 € R".
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THEOREM C.15. If u € €2(Q) is harmonic, then

) - § o H) 45, = | uty (C9)

B(z,r)

for each ball B(x,r) < ).

Proof. We begin by proving the first equality in (C.9)). By the divergence theorem,

ou 0
OZJ —dezj ™ —u(z + rw) dS,
0 B(w,r) 8N( ) Y 2B(0,1) or ( )

0 f 0
=l u(x + rw dSwzrnl—[rlr‘J u(y dS].
or 0 B(0,1) ( ) or o B(w,r) ( ) Y
Therefore,
rlnf u(y) dS, = lim rlnf u(y) dSy = wy_qu(z) . (C.10)
0B(z,r) r—0* oB(z,r)
The second equality in (C.9)) is obtained by integrating (C.10f) in 7. o

Exercise: If u € ¢2(Q) satisfying Au > 0 (or Au < 0), show that

u(z) < J[ u(y) dS, <0r u(z) = ][
0B(z,r) 0B(z,r)

u(r) < J[Bm)“(y) dy  (or u(e)> ]fBM u(y) dy).

u(y) dsy) )

A function u € €%(Q) is called a sub-harmonic/super-harmonic function if Au > 0/< 0.

THEOREM C.16 (Converse to mean-value property). If u € €2(Q) satisfies (C.9) for

each B(x,r) € Q, then u is harmonic.

Proof. If Au # 0, there exists some ball B(z,r) € Q on which Au > 0 (or perhaps
Au < 0)in B(x,r). But this would imply that 0 = SB(x " Au(y) dy > 0, a contradiction.
a

THEOREM C.17. If u € L () satisfies the mean-value property (C.9) for each

loc

B(z,r) € Q, then u e €*(Q).
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Proof. Let n be the standard mollifier defined in Definition [1.38], and let u¢ = 7, % u
in .. Then

@)= [ e oy =5 [ ()

en €

1 €
= — f f n(@)u(x + rw)r*tdS,dr
" Jo JaB(o,1)

€

1 €
= —wy_qu(x) n(g)rn_ldr = u(z).
€" 0 €

Therefore, u¢ = u in €2, . O
COROLLARY C.18. A harmonic function is a €*-function.

COROLLARY C.19. The limit of a uniformly convergent sequence of harmonic func-

tions is harmonic.

C.3.2 Maximum principles

THEOREM C.20 (Strong maximum principle). Suppose that u € €2(Q) n €°(Q) is

harmonic within a bounded domain €2 .

(1) Then maxu = maxu.
Q o

(2) Furthermore, if Q is connected and there exists a point xo € 2 such that

u(zg) = maxu, then u = u(xg) within ).
Q

Proof. Let M = maxu (the boundedness of € implies that such an M exists), and
A={zeQ|u(z) Z M} . The continuity of u implies that A is closed (relative to Q).
If A is empty, then the maximum of w is attained on 02, so we may assume that A is
not empty.

Let z € A, and r > 0 be such that B(z,r) < Q. According to

Mzu(x)ZJ[ u(y)dy < M.
B(z,r)
Equality can only hold if u(y) = u(z) for all y € B(z,r); thus, B(x,r) < A, and hence

A is also open in €. It must be that A = € since it is the only subset of 2 which is
both open and closed in 2. O
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REMARK C.21. In the statement of Theorem it suffices to assume that Au > 0.
Exercise: Let u be sub-harmonic/super-harmonic in 2. Then

(1) Then maxwu = maxu/ minu = minu .
Q 09 Q 00

(2) If Qis connected and there exists a point z € € such that u(z¢) = maxu/u(xy) =
)

minu, then u = u(zy) within €.
0

COROLLARY C.22 (Uniqueness). Let g € €°(09)), f € €°(Q). Then there exists at

most one solution u € €*(Q) N €°(Q) to the boundary-value problem

—Au = f m €,
u=gq on 0€).

COROLLARY C.23 (Comparison). For u,v € €*(Q) n €°(Q), if Au >0, Av =0 in

Q, and u =v on 0Q, then u < v in Q. (For this reason, we call u subharmonic.

C.3.3 The Harnack inequality

THEOREM C.24. Let u be a non-negative harmonic function in €. Then for any
bounded sub-domain Y =), there exists a constant C depending only on n, Q' and
Q such that

maxu < Cminuw.
o o

Proof. Let y € Q, B(y,4R) < Q. Then for any two points x1, z3 € B(y, R), we have

1
= dr < 57— dz,
u(zy) J[B(xl’R)u(a:) S B0 JB(%QR) u(z) dx

1
= de > ————— dx .
u(w2) J[B(m,sR) ule) do |B(073R)|JB(901,2R) ule) dz

n

Consequently, max u < 3" min u. The general case follows from connecting any two
B(y,R) B(y,R)

points in ' by an arc I' so that I' € ] B(z,4R) < 2 for some z, € ' and R > 0.
k=1
The number m only depends on €' and 2, so the constant C' depends only on n,

and Q. O
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C.3.4 Local estimates

THEOREM C.25. Assume u is harmonic in ) and Ucc$). Then for any multi-index
a we have
njal

sup | D%u(x)| < (—)al sup |u(z)|, (C.11)

zeU d ze)

where d = dist(U, 09Q2) .

Proof. Suppose that « =¢; = (0,---,0,1,0,---,0). Since D% is harmonic,
H,_/

(¢ — 1) zeros

D* = d—— d ;) d
u(e) |f Y= 1B |f tv(ue:) dy

0B} maxJu(y) .

_— Ni(y)dS, < ——
U(y) ( ) Y |B([E,T’)| yeB(z,r)

|B($7 T')| 0B(z,r)

As a consequence, with U, denoting the set | J B(z,r),
zeU

max [ D*u(z)| < = max [u(z)]
zeU T zeU,

d
The general result follows from applying the above inequality || times with r = — .

|

REMARK C.26. Inequality (C.11)) is also called the gradient estimatefor harmonic
functions.
C.3.5 Regularity of weakly harmonic functions

THEOREM C.27. For Q) < R", suppose that u € Ll (Q) and satisfies

J;) u(z)Aé(r)dr =0 Yoe b R).

Then w is harmonic in S2.

Proof. Without loss of generality, we may assume that v € L'(Q).
Choose € > 0 sufficiently small so that ¢¢ := 7. % ¢ € (), where 7. denotes the
standard mollifiers given in Definition [1.38] By assumption,

0= L u(z)A¢(z) dx = L u(x)Ap(x) dz . (C.12)
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Since u° is smooth, we can integrate by parts to find that

L Au(z)p(x) dx Voe 6.

Thus, Au® = 0 in €2, so u¢ is harmonic.

By Young’s inequality the sequence u¢ is uniformly bounded in L'(Q):

lul| 1) < |nel v luloie) = || @) -

Since u° is harmonic,

€ T — ; uﬁ
)= 5 7 Ly O

which implies that
1

| < mre el -
BO.RT
The local gradient estimate (C.11)) then provides the inequality

|uf ()

sup [ D*u()] < C'sup | < Clu (e
zeU Q

We have therefore shown that D*u¢ is bounded and equi-continuous on any
Ucc(). By the Arzela-Ascoli Theorem, there exists some subsequence ¢’ such that
u’ —veE*U).

On the other hand, u¢ — w in L'(U) so u = v on U. By pushing dU closer to 04,

we see that u is smooth in Q. Hence for all ¢ € €2(Q),

0= L u(@)Ad(x) dr = L Au(z)d(z) d,

so that « is harmonic. o

C.3.6 Liouville’s theorem

THEOREM C.28. Suppose u : R™ — R is harmonic and bounded. Then w is constant.

Proof. By gradient estimate (C.11f), the derivatives D“u(z) have to vanish for all
r € R" and multi-index «. In particular, this implies that v is constant along any

lines, so w is constant. =
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COROLLARY C.29. Letn = 3 and f € €**(R™) with compact support in R™. Then

any bounded solution of

—Au=f in R"

has the form
ule) = | @)Wy +C

for some constant C'.

C.3.7 Analyticity

THEOREM C.30. Assume u is harmonic in §. Then u is analytic in 2 ; that is, for

each xy €

ulw) = 3 2200 (e

al
(07

within some ball B(xg,r) .

C.4 Green’s Functions

For fixed x € Q, suppose that there is a harmonic function ®*(y) such that A,®*(y) = 0
for all y € Q2 and

P*(y) = P(y — x) VyeoQ.
Then by Green’s second identity,

[#() 2 () —ul) e )] 45, (C13)

| #wsut - |

o2

By (C.8) and (C.13), we obtain that if u € €2(Q) N €°(Q), then
oG
uw) =~ | w5 -vas, - | Gepsuwdy, (€1
oo ON Q

where G(z,y) = ®(y — ) — ®*(y). The function G(z,y) is called the Green’s function

for the domain €.

THEOREM C.31 (Symmetry of Green’s function). For all x, y € ), x # y, we have

G(z,y) = G(y, ).



§/C.4] Green’s Functions 317

Proof. Fix xz,y € Q, x # y. Define v(z) = G(x, z) and w(z) = G(y, z). The goal is
to show that v(y) = w(z).
Letting Qe = Q — (B(z,€) U B(y, €)), and applying Green’s second identity (2.2)),
we obtain that
ov ow Jw v
LB - [8_Nw — a—Nv]dS LB - [ﬁ_NU — ﬁ_Nw]dS
where N denotes the inward-pointing unit normal on 0 B(z,€) u 0 B(y, €). Passing

e — 0, the left-hand side converges to w(x) while the right-hand side converges to

v(y) . 2

C.4.1 The case Q =R* ! xR,

Forz e R =R xRy, let & = (21, -+, @01, —2a). Then &%(y) = ®(y — ) is
harmonic in R% | and ®*(y) = ®(y — z) for all y € OR% . Therefore, the Green’s
function is given by

G(r,y) = oy —x) — P(y — 7),
oG oG

the outward unit normal to dR%} is N = —e, = (0, ..., 1) so N oy and
8G( ) -1 2z,
—(x _ - -
oN Y vo=0 Wy 1|z —y[*’

and Green’s representation formula ((C.14) suggests that the (bounded) solution to

Au=0 in R}, (C.15a)
u=f on OJRY (C.15b)
is
wz)=—| f) G(w y)ds, = 2o J f(y>ndy (VzeR). (C.16)
oRY Wn—1 Jpn-1 |7 — Y|

2z,

Wn-1|r —y?

With K(z,y) = , the equation (C.16) can be written as

u(zr) = - K(z,y)f(y)dsS,.

The function K is termed the Poisson kernel for R% , and (C.16) is called the Poisson

integral formula.



318 Cuapter [C] THE LAPLACE/POISSON EQUATIONS

It remains to verify that (C.16|) provides a solution u € €?(R2) n €°(R}) with

prescribed boundary condition.

THEOREM C.32. Assume that f € €°(ORY) n L*¥(0RY), and u is given by (C.16).
Then u e €*(R%) N €°(RY}) satisfies (C.15p) and (C.15pb).

Proof. Since K (x,y) is smooth if x # y, (C.16) indeed shows that u is smooth. In
particular, u € €*(R2).

Next, we note that the Poisson kernel is normalized; namely,

2, 1
K(z,y)dS, = — f dy=1 VYzeR". (C.17)

oRz Wn—1 Jgo-1 [ —y[?

The identity (C.17) is an immediate consequence of (C.14)) with u € €2(R?) n €°(R%)
taken to be u(x) = 1.

Let z € OR2 . Since f € €°(0RY), given € > 0, there exists § > 0 such that
1f(z) — f(2)] < % whenever |z — 2| < 26.

Then if |z — 2| < 4§, z e R},

u(r) = 1) =] | K y)(f) - f()ds,

<| K(e.)[ 1) — F(2)|dS, + 2mas|f K(z.y)dS,
ORY N B(2,26) + OR}\B(2,20)

< < 4 2max|f] K(z,y)dS, .
2 oRY OR?\B(z,28)

=I

If ye ORM\B(2,20), |y — 2| >26. Soif |z — 2] <6 <,
1
y =zl <ly—a|+lz =z <y — 2|+ Fly - 2]

which implies |y — z| = 3|y — z|. As a consequence,

2
20+ Tn Cx,

max | f| dS, <

b< o e S T
n—1 OR} OR®\B(2,20) 1Y — =

for some constant C' < co. Choose ; even smaller so that 2C9; < €d, then |u(z) —

f(2)| < e whenever |z — z| < §;. This proves u e (). D
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C.4.2 The case Q2 = B(0,1) or Q2 = B(0, R)

For z € B(0,1), let 7 = T and ®*(y) = ®(|z|(y — #)). Then ®*(y) is harmonic in

jz 2

Q, e, A,®%(y) = 0 forall 2,y € Q. Moreover, *(y) = ®(y —x) for all y € dB(0,1).

Therefore, the Green’s function for the unit ball is
G(z,y) = ®(z —y) — P(|z|(y — 7))
Using ((C.14)), we find that the solution to

Au=0 in B(0,1),
u=f on 0B(0,1)

18

oG 1~ |af? f )
u(xr) = — —(z,y)dS, = ——— ds, .
(2) f o [ e, = BT,

since
%< ) 11—z
aN I’?:y -

yedB(01)  wn 1| —y*’

By a change of variables, the solution to

Au=0 in B(0,R), (C.18a)
u=f on J0B(0,R), (C.18b)
is then
R? — WJ fy)
u(r) = ———— ds, . C.19
(=) wn1 R Jopom lz -yl ( )

Similar to Theorem [C.32, we have that

THEOREM C.33. Assume that f € €°(0B(0, R)), and u is given by (C.19). Then

ue €*B(0,R)) n€°(B(0,R)) satisfies ) and )

The function

is the Poisson kernel for the ball B(0, R) .
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C.5 Perron’s Method and Solutions to the Poisson
Equation|

In this section, we prove the existence of solutions to

—Au = f in (C.20a)
u=g on 0€. (C.20Db)

using Perron’s method under the assumption that f € €%%(Q) and g € €°(01).
First, we extend f to whole R" with compact support so that the extension, still
denoted by f, belongs to €%*(R™). Let ¢ = ® % f, and v = u — ¢ . By Lemma|C.12]

—Ag = f, v is harmonic. So, v solves
—Av =0 in Q, (C.21a)
v=g—p=1 on 09Q. (C.21b)
As long as we know how to solve the Dirichlet problem ((C.21)), we obtain a solution to
(C.20)) by summing ¢ and the solution to (C.21)). Therefore, we concentrate on how
(C.21]) is solved.

First we generalize the notion of sub-harmonic function. Recall that a function
w € €*(Q) is sub-harmonic if Aw > 0 in Q, and

wO <] wlds, =M. (C.22)
0B(&p)

A function w € €°(Q) is called sub-harmonic, if for each ¢ € 2, (C.22)) holds for all
p > 0 such that B(§, p)ccQ. Let o(€2) denote the space of all sub-harmonic functions
on Q, and given ¢ € €°(0Q), define

74 (Q) = {w e () N Q) | w< v on o0 } .

o4(€2) is non-empty since the constant function w = ¢ belongs to o () if ¢ < acle%fQ W(x).

For u € €°(Q) and B(&, p)c=Q, we define ug ,, the harmonic lifting of u, as the
function in €°(Q) for which

Ayugp(x) =0 in B(&,p),
ue () = u(x) in Q\B(&, p).

IThe reader may skip this section on the first reading
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Claim: For u € 0(2) and B(&, p)c=Q, u(x) < ug p(x) for all x € Q, and ue , € 0(9).
Proof. Tt suffices to show that

g, (r) < My, (7,7) Vr > 0 such that B(z,r)cc=Q. (C.23)

If B(z,r) < B(&, p), since ug, is harmonic in B(E, p), holds because of the
mean-value property for the harmonic functions. If B(z,r) n B({,p) = &, then
Ugp, = U, SO holds because of . Other than these two cases, let w
be the harmonic function satisfying w = ug¢, on 0 B(z,7). On 0B(x,r) n B(&, p),
w = ug,>u,and on 0B(z,r)\B(£,p), w=1usp =u, w=uon dB(x,r), which by
the maximum principle implies that w > u in B(z, 7). Apply the maximum principle
once again to the domain B(z,r) n B(&, p) and B(z,r)\B(&, p), we conclude that

w > ug, in B(z,r) and hence (C.23)) holds. o
Claim: Let uy,--- ,ug € 04(Q2), and v = max{us, -+ ,ux}. Then v e 0,(Q).

Proof. Given & € Q, for all sufficient small p such that B(§, p)ccQ,

U(g) = max{ul(g)a T 7uk(€)} < maX{Mm (gvp)v T 7Muk (gno)} < Mv<€7p> . o

Claim: For all given ¢ € €°(092), the function wy(x) = sup w(z) is well-defined
weay (£2)

and is harmonic in €.

Proof. wy defined above is well-defined due to the maximum principle for sub-harmonic

functions, and is clearly in 0, (2) since

sup J[ w(y) dS, <J[ sup w(y)dS, .
weoy () JOB(&,p) 0 B(&,p) weoy ()

It suffices to show that w, has the mean-value property. Suppose the contrary, then

w(€) < ]f wyy) dS,

dB(&:p)

for some £ € Q) and some p such that B(&, p) c=). By the previous two claims, the func-

tion (wy)e, belongs to oy (Q), and wy(§) < (wy)ep(§). Then wy(§) # sup w(f).

weay, (2)
o
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If (C.21)) has a solution, it has to be equal to w, defined above since the solution
itself belongs to 0,(€2) . In other words, wy is the only candidate for the solution. In
order to make sure that w,, solves (C.21)), we need to make sure that w,, satisfies the

boundary condition.

DEFINITION C.34 (Barrier Property). A domain is said to have the barrier property
if for each 1 € 09, there exists a function, called a barrier function, Q, € o(Q) n C(Q)
for which

QW(T/>:07 Qn(«r)<0 fOI'(L‘E&Q,l‘;&n.

The barrier property can be verified for a large class of domains §2. For example,
if Q is strictly convex in the sense that through each point 1 € 02 there passes a
hyperplane 7, having only 7 in common with Q, then Q has the barrier property.
As long as §2 has the barrier property, for each y € 0€2, there exists a sub-harmonic
function w € 0,(€2) and w(y) = ¥(y) (for example, consider w(z) = Y(y) + Q,(x)).
The only thing it remains to be proved is that wy € €°(Q), or
lim wy () = (1) .

z€e
T—n

Claim: If €2 has the barrier property, then for n € 0€2,

liminf wy () = $(n).
=1

Proof. For € > 0 and K > 0, the function v(z) = ¥(n) — e + KQ,(x) belongs to
a(2) n€°(Q), and satisfies

v(z) <p(n) —e VYaed,  w(n) =vmn) —e.

Since ¢ € €°(01) , there exists § > 0 such that [¢)(z) —(n)| < € whenever |z —n| < ¢,
x e dQ); thus v(z) < ¢(x)if |z —n| <. If [r —n| = 0, we can choose K large enough
so that v(z) < (z) since @, has negative upper bound on |z — | = §. Therefore,

veoy(Q) (if K is large enough). By the definition of wy, , v(z) < wy(z) for all x € Q;

hence
P(n) — e = liminf v(z) < liminfwy(n). (C.24)
el e
> Tz

We then conclude the claim since ((C.24)) holds for all € > 0 and all n € 092 D
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Claim: If € has the barrier property, then for n € 0€2,

lim (1) = (1)
x—n

Proof. Tt suffices to show that

lim sup wy(x) < P(n). (C.25)
z—n

This is done by considering —w_,(x) which is defined in Q by

—w_y(x)=— sup w(z)= inf o(z).
weo_y (Q) —veo_y ()

For all w € 04(Q) and —v e o_4(), w <Y <von dQ, and w—v e a(Q) N E°(Q);

therefore by the maximum principle for the sub-harmonic functions,
w<v YreQ = wy(r)<—w_y(z) VreQ.

By previous claim,

lim ig?f w_y(z) = —(n) = limsupwy(z) < limsup —w_y(x) < P(n). o
T€ zeQ z€e
=1 xT—n T—n

THEOREM C.35. If the domain Q has the barrier property, and f € €%%(Q), then
there exists a unique solution u € €*(Q) N €°(Q) of the Dirichlet problem

—Au = f m
u=g on 091,

for arbitrary continuous boundary value g .

C.6 Exercises

ProBLEM C.1. Let Q = B(0, %) < R? denote the open ball of radius % centered at

the origin. For o = (1, 22) € 2, let

1
(1, e) = X179 [log (log m) — loglog 2] :
1T
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(a) Show that u e €' (Q);
(b) Show that Au e C(2), but that u ¢ €%(Q).

PROBLEM C.2. Let u € €72

loc

(D) n C(D) be a solution to the problem

~Au=1 in D=(-1,1) x (-1,1) € R?,
u =0 on ¢D.

Show that u cannot belong to €*(D) .

ProOBLEM C.3. Find a solution to the Dirichlet problem Awu = 0 in the square
{(z,y)eR*| —1<z<1,-1<y<1}

satisfying the boundary conditions

3

U(I,y>=COS<7ﬂ-I>, ony=+1,-1<z<1,
3

U(%y):COS(?Wy), onz=41,-1<y<l.

PROBLEM C.4. Let u, v be smooth harmonic functions, such that
u(tr) = t*u(x), v(tz) = t'v(x)

for all x e R", t > 0, with constants a # b. Use Green’s identity to show that

J uvdS = 0.
2B(0,1)

PROBLEM C.5. Let u be a harmonic function in the unit ball By = B(z,1) € R*.
Prove the following gradient estimate:

V(o) < n sup u(z) - u(xo)]

[L’EBl
Hint: Note that all the derivatives 0,,u are harmonic in By, so that by the mean
value and divergence theorems,

ou 1 ou 1

—(xg) = — r)dr = — ulN,;dS',
63:1( 0) ‘Bly By 6:1:Z( ) ’Bl‘ 9B

where N; is the i-th component of the unit normal N to ¢ By . Obviously, for z € 0By,

we have N(z) = = — xq.
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PROBLEM C.6. Show that there are no functions u € 62.(R%) N Cioc(R?%) satisfying

loc

the properties
uz=0, Au=0 in R: ={zr=(z1,22) eR® | 29 >0}, u(x1,0)=2}.

Hint: Suppose there exists such a function u. For arbitrary R > 0, compare u with

the solution v € €2,(R2) n C(R2) to the problem

loc
Av=0inR2, v(z,0) = ((z1)27,

where

(e ¢ (~2R,2R), 0<(<1, and ¢=1lon[-R,R].

PROBLEM C.7. Let u(xy,35) € €*(Q), where Q = {z = (z1,35) e R? | 21 > 0,25 >
0} , such that
Au=0 in Q, u=0 on 0.

In addition, let |u(x)| < ¢ + ¢o|z| in ©Q with some constants ¢; and ¢ . Show that
u=01in Q.
Hint: Extend the domain where u is defined to R? and use the gradient estimates to

show that w is in fact a linear function.

PROBLEM C.8. Let u(z) = u(z,x2) be a bounded solution of the Laplace equation
Au =0 in R%

with boundary condition

1]
u(z1,0) = g(z1) = 222
1

Show that the gradient Vu is unbounded on R% .

PrOBLEM C.9. Find the Green function for the domain ) = {q: € R“‘ |z < 1,2, >
O} and the corresponding Green’s representation formula for the solution of the

Dirichlet problem

Au =0 in €,
u=f on 0.



Appendix D

LP-Estimates for Solutions of Elliptic
Equations

D.1 The Riesz Potential

Let p € (0,1], and Q = R™ be bounded. We define the operator V,, on L'(£2) by the

Riesz potential

(V. f) () = f o — M fy)dy

2
Note that p = — corresponds to the case of Newtonian potential (introduced in
Chapter [C]).
The first observation is that when f = 1, then
o Ro#
Vi = [ le—yPe g < [ ooy < 21 o)
Q B(x,R) np
where R is chosen so that || = |B(z, R)| = Pnolpn
n

THEOREM D.1. The operator V,, maps LP(2) continuously into L(S) for any q,

1 < q < o satisfying

1 1
0<d=6(pg)=~—~-<p.
p q

Furthermore, for any f € LP(Q),
IVifllzawy < Cllf e »
where C' depends only on p, 6 and |§2| .

326
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Proof. Let ™' =1 —§ and h(z — y) = |z — y[®» Y. Then h(z —-) € L"(Q2) and by
the same type of estimates as ,

17 zrey < Clu, 6,192]) .
By writing Az — y)f(y)] = h(z — y)ihlz — 1) D) F1f (), we find that

Vsl < [ [ we—wisora]'| [ we-na] [ [ 1rera]

hence
HVMfHL‘I(Q) < C(/”W 67 |Q|)Hf”LP(Q) . o

D.2 DMarcinkiewicz Interpolation Theorem

DEFINITION D.2. Let f be a measurable function on a domain 2 in R". The
distribution function px = py of f is defined by

= {z e Q||f(z)| > t}].
Some properties of the distribution function:
1. py is non-decreasing in [0, o).

2. py is right continuous; that is, hm f(t) = f(to) for all ¢y € [0, 00).

t—>t0

3. (Layer cake representation) If u € L?(£2), then

0 1
p| e wlon] e i),
1 flze) = [ 0 ] (D.2)
inf {t € [0,00) | ps(t) = 0} if p=o0.
4. (Chebyshev’s inequality) For any p > 0 and f € L?(Q)),
Pt < [ 1) < 1 (D.3)
{If1>t}

DEFINITION D.3. The space weak-LP(€2) consists of measurable functions f such
that
py(t) < Ct7°

for some constant C' (depending on f).
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THEOREM D.4. Let T be a linear mapping from L(Q) n L™(Q2) into itself, 1 < q <

r < oo and suppose that there are constants My and My such that

M q q M. r r
prp(t) < (M) . urp(t) < (M) (D.4)

forall fe LYQ) N L"(2) andt > 0. Then T extends as a bounded linear mapping
from LP(Q) into itself for any p in between q and r, and

ITf o) < CMPM ™| flLoe) (D.5)

for all fe LY(Q) n L"(QQ), where

and C' depends only on p, q and r.

REMARK D.5. Condition (D.4) is the same as saying that 7" : L(§2) — weak-L9((2)
and T : L"(Q) — weak-L"(§2) are bounded.

Proof. For f e LY (Q)nL"(Q) and any s > 0, we write [ = gs+hs, where g, = fx{f>s)
and hy = fxqf<s} - Then |Tf| <|Tfi| +|Tfs|, and hence

2M19s!m<m>q n <2M2Hhslm<m>’"
/ / ‘

By (D.2) with s = t/A (for some A to be determined later),

prs(t) < g, (4/2) + prpa(4/2) <

Q0
1T £ 1200 <p(2M1)qf tp-l-Q[ f | f(x)]qu]dt
0 {If[>t/A}

o0

= P24 LOO S [ £|f|>s} () |qu] ds

0

+ p(2My)T AP L sp*H[ J{ - | f(x)]’”dw]ds.

Now, by the Fubini Theorem,

[l oo [ [ i i,
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o]

and similarly we have J

1
Sp—l—q[ f | f(x)y’“da:] ds = ——| f|,q - Therefore, for
LA 0 0 {If|<s} r=r
a >0,
p — p r —r
HTinP(Q) < [qu(QMﬁqu ‘+ rp(ZMz) AP ]Hf”ip(g) :

Minimizing the bracket on the right-hand side, we find that the minimum of the
-9 _r_
right-hand side is attained when A = 2M;“ M, * which implies the desired inequality.

(]

D.3 Calderon-Zygmund Inequality

THEOREM D.6. Let f e LP(Q), 1 <p < w0, and let w be the Newtonian potential
with density f defined in Remark|C.14, Then w e W?P(Q), —Aw = f a.e., and

| D*wle) < Clf e (D.6)
where C' depends only on n and p. Furthermore, if p = 2, we have

| D*w2@ny = | fllz20) - (D.7)
Proof. We first note that and Theorem implies w € W?2?(Q) .

1. We prove first the case that p = 2. Suppose that f € € (R"), then w € €*(R")
and —Aw = f. Therefore, if spt(f) < B(0, R),

j M) Pde = f f(@)Pde.
B(0,R) B(0,R)

On the other hand, integrating by parts implies that

dr = f wxz% dx
fB(QR) D2w(a)fdr = ) g0, (1)

i,j=1

S ZJ Wy, () Aw,, (z)dx + J Wy, (T)We,a, ()N;dS
i=1YB(0,R)

2 B(0,R)
— J |Aw(z)[*dx + J Wy, (T)We,a, (2)N;dS
B(0,R) 9B(0,R)

where in the last equality we use the fact that Aw = 0 on dB(0, R) to avoid
having another boundary integral. By (C.1k) and (C.1p), |Vw| = O(R'™) and
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|D*w| = O(R™) ; hence the boundary integral on the right-hand side approaches
zero as R — 0. So (D.7)) is established for the case f € €°(R").

Now suppose that f € L?(Q2). Choose f € €*(Q2) € €*(R") such that f, — f
in L?(Q) as k — 0. Then wy, = ® * f, € H'(Q) and |wy — we| g0y < C| fi —
fe|z2() because of Theorem Moreover, |D*(wy, —we)| r2@sy = || fe — fel 2
because of (D.7). Therefore, wy is a Cauchy sequence in H?(€2) hence converges
in H%(Q). Again by Theorem |we — wl g1y — 0 as k — o, so the H?-limit

must be w as well; thus
| D*w| 20y < O fllz2@) - (D.8)

Since wy — w in H*(Q), Jim (Awy, py = (Aw, ) thus —Aw = f a.e.
—0

Finally, we explain why equality in (D.7)) still holds if f € L*(Q2). First, by
D?wy, is a Cauchy sequence in L?(R"), so it converges to some element
u € L*(R"). The restriction of u to  is D?*w sine wy, — w in H*(Q). It is

unclear if the limit is still the Hessian of w outside €2. Nevertheless, for all
bounded V oo 2,

w(z) = chwx _)f) = fvcbu- ) fy)dy.

if we extend f to be zero outside 2. By doing so, we know that wp — w in
H?(V), thus w = D*w in V. Since V is arbitrary, v = D?*w in R*, and (D.7))

follows.

For fixed i and j , we define the linear operator T': L*(2) — L*(Q) by T'f = wy,a, -
Then (D.7)) and the Chebyshev inequality (D.3|) imply

i) < (20 g 1o 0 pe o).

We next show that

Ol £l
uw(t)é@ Vit>0,feL'(Q), (D.9)

then (D.6) (for the case that 1 < p < 2) follows from the Marcinkiewicz

interpolation theorem.
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Extend f to be zero outside €2, and for fixed t > 0 choose a cube Ky 2 €2 such
that

| irtede <t
Ko
Subdivide K into 2" congruent subcubes with disjoint interiors. Those subcubes

K satisfying J | fldz < t|K| are subdivided again and the process is repeated

indefinitely. Let P denote the collection of subcubes K that satisfy J \f(z)] >
K

t| K|, and for each K € P let K denote the subcube whose subdivision gives K .
Then for each K € P,

1 2"
<] ) @lae < = | @l <

K
and by Lebesgue differentiation theorem |f| <t a.e. on G = Ky — |J K. The
KeP
function f then can be expressed as the sum of two functions g and b (that

J |f(z)|dz <2,  (D.10)

stand for good and bad parts of f), where g and b are defined by
f(x) ifred,

= 1
9(z) WJ |f(z)|dx if x € K for some K € P,

and b = f — ¢g. It is then easy to see that |g] < 2"t a.e., b =01if z € G, and

bdx = 0.
K

3. To prove , we note that

g (t) < g (t/2) + iro(t/2). (D.11)

so we concentrate on the upper bounds of the right-hand side. Clearly g € L?(€2),
so by |g] < 2"t a.e.,
2 n n+2
pt2) < B0 AT e < 72 [
Let bx = by . For each K € P, there exists b, € €°(K) converging to by in
L?(Q) and satisfying J bndx = 0. Then if x ¢ K, we have
K

Tho(z) - L Dpr (7 — 1))y

~ | @ = ) = By (o = D [l
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where ¢ denotes the center of K. By the mean value theorem,

|(I>fvifl?j (LL' - y) - ®J»’i$j ($ - g)|
= |(y = §) - VP, (x — §)| < Cly — y|dist(z, K)7~

hence by letting 6§ = diam(K),
|Tb,,(x)] < Codist(x, K)~ J b (y)|dy -

Since dist(z, K') = c|z — g| for all x ¢ B(y,0) for some fixed constant ¢ > 0,

f (Tby ()| d
KO_B(?jv(S)

<05j - g e f ba(y)ldy < C f b() e
R2\ B(7,0) K K

Passing m to infinity we conclude that

J (Thye(2)]dz < cf b ()] dz
Ko—B(yx,0k) K

Therefore, if F* = Jx.p B(Uk,0k) and G* = Koy — F*,
J Tb(x \dm—f ’T Z b ()| dz < ZJ Thse ()] da
KeP
czf b ()| dz < CJ b(z)|der < (JJ f(2)|de

KeP

By the Chebyshev inequality (D.3)),

C|fllza
o e G*|[Ta)| > 1/2}] < Ll

Moreover, by (D.10)),

_ _ Wn-1g, Wil Ok \*
B(gic, 0xc)| = 05 = St ()

2[
n n 2
- St < S [ pjar;
n
C 1 C 1
thus |F*| < M As a consequence, firy(t/2) < M thus (D.9

follows from (D.11]).
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. By Marcinkiewicz interpolation theorem,

1T fllr)y < C0,p)| flzry ¥ fe LP(),pe(1,2].

Inequality can be extended to the case p > 2 by duality: suppose that
f,ge €r (), then

| 1@ = [ 0@ @de = [ [ w000,y
- | | o= )y = | s Totote

hence by denoting p’ = 7 < 2,
D

|| Tr@g@)s] <l Toliey < Ol lglie-

The above inequality holds for all g € €°(2), and by the density argument, it
holds for all g € L (Q), so for all f e €*(Q),

1T f ey < Cllf e - (D.12)

The argument leads to then implies that the equality above holds
for all f e LP(Q). o
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