3. Problems: 200-2015-3: Hilbert

Problem 3.1. (Wi 02 5)(Wi 04 5)

- (1) Show that every subset A of a Hilbert space has $(A^{\perp})^{\perp}$ the closure of its linear span.
- (2) Show that every closed convex subset of a Hilbert space contains a unique element of minimal norm.

Problem 3.2. (Fa 04 5) Show that if x and y are elements of a normed linear space X so that f(x) = f(y) for every $f \in X^*$ then x = y.

Problem 3.3. (Wi 06 5) Take $\{u_k\}_{k \in \mathbb{N}}$ to be an orthonormal set in a Hilbert space X. Characterize those sequences of scalars $\{a_k\}$ so that $\{a_ku_k\}$ is compact in X.

Problem 3.4. (Wi 09 3)

- (1) Show that if $\{x_n\}$ is a sequence of elements of a Hilbert space \mathbb{H} converging weakly to x and $||x_n||$ also converges to ||x|| then the sequence converges to x in norm.
- (2) Find a sequence of elements $\{x_n\}$ of a Hilbert space \mathbb{H} converging weakly to x with $\liminf_{n\to\infty} ||x_n|| > ||x||$.

Problem 3.5. (Fa 09 4) Find examples of sequences of bounded operators on a Hilbert space which:

- (1) converge weakly but not strongly
- (2) converge strongly but not in norm
- (3) Show that every bounded operator on a seperable Hilbert space is the strong limit of a sequence of finite rank operators.

Problem 3.6. (Fa 10 6) Determine for each pair either by proof or counterexample whether a sequence of elements in a Hilbert space:

- (1) which converges weakly must also converge strongly
- (2) which converges strongly must also be bounded
- (3) which converges weakly must also be bounded
- (4) which is bounded must have a subsequence which converges strongly
- (5) which is bounded must have a subsequence which converges weakly
- (6) which converges weakly must have the images under T converging in Cⁿ for every bounded operator from the Hilbert space to Cⁿ.

Problem 3.7. (Fa 12 1) Show that $(C[0,1], \|\cdot\|)$ with $\|f\| = \sup_{x \in [0,1]} |f(x)|$ is not the normed linear space arising from a Hilbert space.

Problem 3.8. (Sp 14 2) Show that a linear operator T from a Banach space X to a Hilbert space H is bounded iff it takes weakly convergent sequences in X to weakly convergent sequences in H.

3.1. Demonstration Problems.

Problem 3.9. (Wi 03 2) Consider the Hilbert space $L^2[-1,1]$.

- (1) Find the orthogonal complement to the subspace of polynomials.
- (2) Find the orthogonal complement to the subspace of polynomials in x^2 .

Problem 3.10. (Fa 03 4) Show that if z and y are elements of a Hilbert space X so that $\langle y, x \rangle = \langle z, x \rangle$ for every $x \in X$ then y = z.