Math 21B Practice Final Spring 2025

You may use one page of notes but not a calculator or textbook. Please do not simplify your answers.

Basic and Trigonometric Integrals

$\int x^n dx$	=	$\frac{1}{n+1}x^{n+1} + C$
$\int x^{-1} dx$	=	$\ln x + C$
$\int e^x dx$	=	$e^x + C$
$\int \sin(x) dx$	=	$-\cos(x) + C$
$\int \cos(x) dx$	=	$\sin(x) + C$
$\int \frac{dx}{\sqrt{1-x^2}} dx$	=	$\arcsin(x) + C = -\arccos(x) + C$
$\int \sec^2(x) dx$	=	$\tan(x) + C$
$\int \tan(x) dx$	=	$\ln \sec(x) + C$
$\int \csc^2(x) dx$	=	$-\cot(x) + C$
$\int \cot(x) dx$	=	$\ln \sin(x) + C$
$\int \frac{dx}{1+x^2} dx$	=	$\arctan(x) + C = -\arctan(x) + C$
$\int \sec(x) \tan(x) dx$	=	$\sec(x) + C$
$\int \sec(x) dx$	=	$\ln \sec(x) + \tan(x) + C$
$\int \csc(x) \cot(x) dx$	=	$-\csc(x) + C$
$\int \csc(x) dx$	=	$-\ln \csc(x) + \cot(x) + C$
$\int \frac{dx}{ x \sqrt{x^2-1}} dx$	=	$\operatorname{arcsec}(x) + C = -\operatorname{arccsc}(x) + C$

1. A function has the following values:

Х	0	2	4	6	8	10	12
f(x)	4	3	5	6	7	6	5

Estimate the integral $\int_0^{12} f(x) dx$ using three equal length intervals and the midpoint rule.

2. Find the number:

$$\int_{-1}^{1} (x+1)e^{x+1}dx.$$

3. Find the number:

$$\int_0^2 \frac{dx}{9-x^2}.$$

4. Find the antiderivative with constant of integration:

$$\int \frac{dx}{9+x^2}.$$

5. Determine whether the improper integral converges:

$$\int_0^\infty \frac{dx}{9+x^2}.$$

- 6. Consider the curve $y = \sqrt{9 + x^2}$ between x = 0 and x = 4. Write an integral for the length of the curve. You do not need to evaluate the integral.
- 7. Consider the solid obtained by revolving about the x-axis the region bounded above by the curve $y = \sqrt{9 + x^2}$, below by the x-axis and between x = 0 and x = 4. Find the volume of the solid.

8. Find the work in Nm required to lift an anchor which weighs 100N along with its 10m chain which weighs $100\frac{N}{m}$.

The last three problems find the slopes of curves at the origin.

- 9. Find f'(0) if $f(x) = \int_0^{3x} \cos(t^2) dt$. Hint: no integration is required.
- 10. Find the slope $\frac{dy}{dx}$ at the point where t = 0 of the curve given parametrically by $x = t + t^2$ and $y = te^t$.
- 11. Consider the curve given in polar coordinates by $r = \theta$. Graph the points where θ is $\frac{-\pi}{4}$, 0 and $\frac{\pi}{4}$ and find the slope $\frac{dy}{dx}$ at the point where θ is 0.