Problem 6.1. (Wi 04 9) Show that if some power of an n by n matrix A with field coefficients is 0 then $A^n = 0$.

Problem 6.2. (Fa 04 1) Assume that f and g are linear maps from a finite dimensional complex vector space V to itself. Show that there is some $v \in V - \{0\}$ for which f(v) and g(v) are collinear.

Problem 6.3. (Wi 06 3) Find all possible Jordan canonical forms for an n by n matrix M with $M^n = 0$.

Problem 6.4. (Fa 06 2) Find the dimension of a finite dimensional vector space V and all possible Jordan canonical forms for a linear operator from V to itself if the operator has characteristic polynomial $x^2(x-1)^4$ and minimal polynomial $x(x-1)^2$.

Problem 6.5. (Wi 07 6)

- (1) Give an example of a 4 by 4 matrix with 3 as the only eigenvalue and a two dimensional eigenspace.
- (2) Write K for the set of all matrices satisfying the above conditions and ϕ for the action of $GL_4(\mathbb{C})$ on K by conjugation (so if $A \in GL_4(\mathbb{C})$ and $M \in K$ then $\phi_A(M) = AMA^{-1}$). How many orbits does this action have?

Problem 6.6. (Wi 07 6) Show that if A is a finite dimensional square complex matrix and e^A is defined to be $1 + A + \frac{A^2}{2!} + \ldots + \frac{A^k}{k!} + \ldots$ then $\det(e^A) = e^{tr(A)}$.

Problem 6.7. (Fa 08 3) Assume that M is a 3 by 3 complex matrix with characteristic polynomial $x^3 + 5x^2 + 3x + (9 - i)$.

- (1) Find the determinant of M^2 .
- (2) Find the trace of M^2 .
- (3) Find the characteristic polynomial of M^2 .

Problem 6.8. (Fa 09 3) Show that if A and B are linear transformations on a finite dimensional vector space then $\dim(\ker(AB)) \leq \dim(\ker(A)) + \dim(\ker(B))$.

Problem 6.9. (Sp 11 1) Let M be an n by n complex matrix. Show that the following three conditions are equivalent:

- (1) $MM^* = M^*M$ (that is M is normal)
- (2) M = A + iB for some A and B commuting and both self-adjoint.
- (3) M = RU for some R and U commuting with R self-adjoint and U unitary.

Problem 6.10. (Sp 12 1) Show that every real, square, upper triangular matrix which commutes with its transpose must be diagonal.

6.1. Demonstration Problems.

Problem 6.11. (Wi 04 12) A matrix M over \mathbb{C} has characteristic polynomial $(x-3)^4(x+4)^3$ a one dimensional eigenspace for eigenvector -4 and a two dimensional eigenspace for eigenvector 3.

- (1) Find the determinant of M.
- (2) Find the trace of M^2 .
- (3) Find all possible Jordan canonical forms for M.

Problem 6.12. (Wi 08 2) Is every n by n complex matrix similar to its transpose?

Problem 6.13. (Wi 09 1)

(1) Find a complex matrix M with

$$M^2 = \left[\begin{array}{rrrr} 1 & 3 & -3 \\ 0 & 4 & 5 \\ 0 & 0 & 9 \end{array} \right]$$

(2) How many such matrices are there. (Note that if M is a solution so is -M.)