1. Tensors F18.2

Fall 2018 Problem 2. Let \mathbb{H} be the real quarternions. Then $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{H}$ is isomorphic to which of the following rings? Prove your answer.

- (a) $\mathbb{C} \times \mathbb{C}$
- (b) $\mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}$
- (c) $\mathbb{M}_2(\mathbb{C})$
- (d) $\mathbb{M}_2(\mathbb{R})$
- (e) $\mathbb{M}_2(\mathbb{H})$
- (f) $\mathbb{M}_2(\mathbb{R}) \times \mathbb{M}_2(\mathbb{R})$

1.1. Ideas F18.2.

- This comes from Brauer groups.
- Consider the \mathbb{R} dimensions.
- Consider the centers.

2. TENSORS
$$S13.2$$

Spring 2013 Problem 2. Consider an attempt to make an \mathbb{R} -linear map

$$f:\mathbb{C}\otimes_{\mathbb{C}}\mathbb{C}\to\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$$

or

$$\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}\to\mathbb{C}\otimes_{\mathbb{C}}\mathbb{C},$$

in either direction given be the formula $f(x \otimes y) = x \otimes y$. In which direction is this map well defined? Is it then surjective? Is it injective?

2.1. Ideas F16.6.

• If $f : R \to S$ is a ring map and M and N are S modules then via f they are also R modules and f induces a map from $M \otimes_R N$ to $M \otimes_S N$.