1. Tensors F18.4

Fall 2018 Problem 4. Solve the following:

- (a) Prove that $R/I \otimes_R R/J \cong R/(I+J)$ for R a commutative ring, and $I, J \subset R$ are ideals.
- (b) Find the dimension of $\mathbb{Q}[x, y]/(x^2 + y^2) \otimes_{\mathbb{Q}[x, y]} \mathbb{Q}[x, y]/(x + y^3)$ as a vector space over \mathbb{Q} , or explain why it is infinite.

1.1. Ideas F18.4.

- (a) Try the case $R = \mathbb{Z}$.
- (a) Try the universal property of \otimes for the map in one direction.
- (a) $R^2/(RI + RJ)$ seems better. If $1 \in R$ they are the same.
- (a) Try the construction of \otimes for the map the other direction.
- (b) Eliminate the variable x from $\mathbb{Q}[x, y]/I$ if $x p(y) \in I$.

1.2. Write up F18.4. 1

(a) Write $T = R^2/(RI + RJ) \in R$ -Mod and prove that $R/I \otimes_R R/J \cong T$ as R-modules. If $1 \in R$ then T = R/(I + J).

Recall that if M and N are R-modules then $M \otimes_R N$ has

- (1) the universal property that there is an *R*-bilinear map j: $M \times N \to M \otimes_R N$ and any *R*-bilinear map $f : M \times N \to W$ factors uniquely through j.
- (2) the construction $M \otimes_R N = R^{\oplus (M \times N)} / \sim$ with $j((m, n)) = m \otimes n$.

Consider $f: R/I \times R/J \to R^2/(RI+RJ)$ given by f((r+I, r'+J)) = (rr' + (RI+RJ)).

It is easy to check that f is well defined and R-bilinear so by

(1) there is $g: R/I \otimes_R R/J \to R^2/(RI + RJ)$ with $g \circ j = f$. Consider $h: R^{\oplus (M \times N)} \to R^2/(RI + RJ)$ given by $h(r \otimes r') = rr' + (RI + RJ)$.

It is easy to check that h induces a map k from the tensor product and $k = g^{-1}$ proving part (a).

(b) From (a) one has the desired module isomorphic to $\mathbb{Q}[x, y]/(x^2 + y^2, x + y^3) = \mathbb{Q}[y]/(-y^6 + y^2)$ which has a \mathbb{Q} -vector space basis $\langle 1, y, y^2, y^3, y^4, y^5 \rangle$ and is of dimension 6.

2. Tensors F16.6

Fall 2016 Problem 6. Show that the \mathbb{R} -modules $L = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $L = \mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic.

- 2.1. Ideas F16.6.
 - Consider the \mathbb{R} dimensions.

2.2. Write up F16.6. As \mathbb{R} - vector spaces the first is 4 dimensional and the second is 2 dimensional.