Fall 2014 Problem 5. Let ρ be a representation of a finite group G on a vector space V and let $v \in V$.

- (a) Show that averaging $\rho_g(v)$ over G gives a vector $\overline{v} \in V$ which is fixed by G. (b) What can you say about this vector when ρ is an irreducible representation?

Fall 2012 Problem 6. Consider the dihedral group $D_4 = \langle r, s : s^2 = r^4 = 1, rs = sr^{-1} \rangle$ of order 8.

- (a) Find the conjugacy classes of D_4 .
- (b) Find the character table of D_4 .

Fall 2006 Problem 5: Define $\phi_A(X) = AXA^{-1}$ if $X \in \mathbb{C}^{2 \times 2}$ and $A \in GL_2(\mathbb{C})$.

- (1) Check that this defines a linear representation of $GL_2(\mathbb{C})$
- (2) Show that this representation is reducible.
- (3) Write down one element of each orbit of the above action and in each case find the stabilizer of that element.

Winter 2007 Problem 3: Consider the following 5 by 5 character table for the finite group G in which a is a primitive 5th root of unity:

- (1) Show that G is simple and of order 60 and find the orders of its conjugacy classes.
- (2) Find the decomposition into irreducible representations of the tensor produt of the two 3-dimensional irreducible representations.

Spring 2013 Problem 3. The dihedral group D_4 acts as the symmetries of a square in the plane \mathbb{R}^2 with coordinates x and y. Suppose that the corners of this square are at $(\pm 1, \pm 1)$. Then D_4 acts linearly and it therefore has an induced action on the vector space V_n of homogeneous polynomials in x and y of degree n. Find the character of V_n viewed as a representation of D_4 . (Note: the character will depend on n.)

Fall 2007 Problem 1: Show that every matrix in the image of a complex representation of a finite group is diagonalizable.

Fall 2018 Problem 6. Let V be the subspace of \mathbb{C}^3 spanned by $v_1, v_2 =$ (1,-1,0),(0,1,-1) which is an invariant subspace under the permutation action of S_3 , and so gives a two dimensional representation $\rho: S_3 \to \operatorname{GL}(V)$.

- (a) Write down the matrices of $\rho(\sigma)$ in this basis.
- (b) Describe a Hermitian inner product \langle , \rangle on V in the basis v_1, v_2 which is
- G-invariant. i.e. $\langle \rho(g)u, \rho(g)v \rangle = \langle v, u \rangle$. (c) Describe the tensor product $V \otimes_R V$, as an R-module where $R = \mathbb{C}[H]$ and $H \subset S_3$ is the subgroup $\{1, (123), (132)\}.$

Spring 2015 Problem 6. Let G be a finite group and $\rho: G \to \mathrm{GL}_n(\mathbb{C})$ a representation.

- (a) Show $\delta: G \to \mathbb{C}$, $g \mapsto \det(\rho(g))$ is linear character of G (i.e. a group homomorphism to the multiplicative group).
- (b) Show: If $\delta(g) = -1$ for some $g \in G$ then G has a normal subgroup of index 2.
- (c) Show: If G has order 2k, k odd, then G has a normal subgroupu of index 2.
- (d) Let $\chi(g) = \operatorname{tr}(\rho(g))$ and $g \in G$ an involution. Show: (i) $\chi(g)$ is an integer; (ii) $\chi(g) \equiv \chi(1) \mod 2$; (iii) if G has no normal subgroup of index 2, then $\chi(g) \equiv \chi(1) \mod 4$.

Spring 2014 Problem 5: Let V be a linear representation of a group G over the field $\mathbb{Q}(\sqrt{2})$ with character $\chi:G\to\mathbb{Q}(\sqrt{2})$. Consider V as a vector space $V_{\mathbb{Q}}$ over the subfield \mathbb{Q} with the same action of G. Find the character $\chi_{\mathbb{Q}}$ of this new representation in terms of the original character χ .